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We present Qibolab, an open-source software
library for quantum hardware control inte-
grated with the Qibo quantum computing mid-
dleware framework. Qibolab provides the soft-
ware layer required to automatically execute
circuit-based algorithms on custom self-hosted
quantum hardware platforms. We introduce
a set of objects designed to provide pro-
grammatic access to quantum control through
pulses-oriented drivers for instruments, tran-
spilers and optimization algorithms. Qibolab
enables experimentalists and developers to del-
egate all complex aspects of hardware imple-
mentation to the library so they can stan-
dardize the deployment of quantum computing
algorithms in a extensible hardware-agnostic
way, using superconducting qubits as the first
officially supported quantum technology. We
first describe the status of all components of
the library, then we show examples of control
setup for superconducting qubits platforms.
Finally, we present successful application re-
sults related to circuit-based algorithms.
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1 Introduction
A successful deployment of quantum computing al-
gorithms requires quantum hardware and middleware
software dedicated to instrument control for specific
quantum platform technologies.

The goal of middleware is to provide standardized
software tools which abstract heterogeneous software
interfaces from high-level applications. From quan-
tum computing algorithms based on the quantum cir-
cuit paradigm, to low-level driver instructions dedi-
cated to a specific experimental setup including in-
struments. A proper implementation of middleware
software accelerates research from theory to experi-
ments by reducing the amount of effort and expertise
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required to operate a quantum platform and develop
novel quantum algorithms.

Nowadays, the major challenges of middleware, as
a research accelerator, include the need of standard
code procedures for quantum control algorithms, cal-
ibration and characterization, all extensively tested
and reviewed. This software should be designed in
such a way that it could be reused by similar exper-
iments in multiple research laboratories dedicated to
quantum hardware design and fabrication. Therefore,
one of the expected positive side effects of the devel-
opment of middleware is the generation of a database
of algorithms and procedures built and maintained
by a large research community. As an example, it is
possible to find similar cases in other research fields
such as data analysis tools [1] and Monte-Carlo event
generators [2] for high-energy physics and artificial in-
telligence [3].

Since the beginning of 2020, despite the growing
interest in quantum computing and the recent de-
velopments in quantum hardware platforms, we have
observed the lack of a standard middleware open-
source framework dedicated to self-hosted quantum
platforms. There are software libraries dedicated to
quantum computing such as Cirq [4] and TensorFlow
Quantum [5] from Google, Qiskit [6] from IBM,
PyQuil from Rigetti [7], among others [8–30]. How-
ever, many of these software libraries have been pro-
moted just to grant users access to freeware and/or
commercial cloud-based platforms, hence no full-stack
open-source library for quantum algorithms, from
simulation to quantum hardware control was avail-
able. Moreover, specialized quantum hardware solu-
tions such as QCodes [31], PyCQed [32] or Labber [33]
offer too rigid a structure to seamlessly incorporate all
the other essential features that a full-stack solution
requires. Therefore, we started developing Qibo [34–
37], an open-source middleware framework for quan-
tum computing, by establishing an international col-
laboration network involving laboratories in universi-
ties and research institutions located in Europe, Asia
and America.

In this manuscript we present for the first time
Qibolab [38], a software library which unlocks Qibo’s
potential to execute quantum algorithms on self-
hosted quantum hardware platforms. We provide a
dedicated application programming interface (API)
for quantum circuit design, qubit calibration, instru-
ment control through arbitrary pulses, driver opera-
tions including sweepers and transpilation into a given
platform topology using its native gates. A successful
implementation of Qibo will deliver to the research
community a first prototype of extensible quantum
hardware-agnostic open-source hybrid quantum oper-
ating system, fully tested and benchmarked on super-
conducting platforms.

The paper is organized as follows. In Sec. 2 we de-
scribe the project status, design and modules. Then,

in Sec. 3 we present a detailed overview of the Qibolab
library for version 0.1.0. In Sec. 4 we show examples
of applications involving superconducting qubit plat-
forms. Finally, in Sec. 5 we draw our conclusion and
discuss about future development directions.

2 Project overview and specification
In this section we summarize the status of Qibo in
the release 0.2.0 by describing the software design,
the latest features implemented in modules and tools,
including simulation, hardware control and calibra-
tion. The aim of this section is to provide an updated
high-level description overview of the project, follow-
ing up the previous releases documented in Refs. [34]
and [35].
For an in depth technical description of the Qibolab

library and its software features we invite the reader
to proceed to Sec. 3 and 4.

2.1 Software design
In Fig. 1 we schematically show Qibo’s layout. The
framework is divided into two blocks: the language
API and the backends implementation for execution
on various classical or quantum hardware.
The API contains a set of high-level interfaces for

fast prototyping of quantum computing algorithms
based on circuit and adiabatic paradigms adopting
Python as programming language.
The quantum circuit API implements primitives for

exact quantum state manipulation, circuit model ini-
tialization with single and two-qubit gates, as well
as more complex operations such as Toffoli gates and
gate fusion. This API also includes an exhaustive in-
terface to perform final state measurements through
shots. Furthermore, dedicated functions are avail-
able for noisy quantum simulation on classical hard-
ware. The user has the possibility to build custom
noise models through channels such as Kraus chan-
nel operators [39], a multi-qubit noise channel that
applies Pauli operators with given probabilities, an
n-qubit depolarizing quantum error channel, single-
qubit thermal relaxation error channels or readout
and single-qubit reset channels. Error mitigation
techniques for quantum circuits are also available
with the following algorithms: Zero Noise Extrapola-
tion (ZNE) [40], Clifford data regression (CDR) [41],
randomized readout [42] and Variable Noise CDR
(vnCDR) [41].
These circuit-based primitives are complemented

by a database of circuit-based models such as
the quantum fourier transform (QFT) [43], vari-
ational quantum eigensolver (VQE) [44], adia-
batically assisted variational quantum eigensolver
(AAVQE) [45], quantum approximate optimiza-
tion algorithm (QAOA) [46], feedback-based algo-
rithm for quantum optimization (FALQON) [47],
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Figure 1: Schematic overview of Qibo software components, including backends and tools, for release 0.2.0.

style-based quantum generative adversarial networks
(style-QGAN) [48], Grover’s algorithm [49] and the
travelling salesman problem (TSP) [50]. In addition
to these features, Qibo also provides a set of optimiz-
ers and callbacks for variational circuit optimization
and a module with quantum information primitives.

Our annealing module API provides algorithms for
time evolution of quantum states, symbolic and nu-
meric matrix-based Hamiltonian allocation and adi-
abatic evolution [51]. In order to accelerate the ini-
tialization of Hamiltonians, Qibo provides a database
of pre-coded models including the Heisenberg XXZ,
the non-interacting Pauli-X/Y/Z, the transverse field
Ising model (TFIM) and the max cut Hamiltonian.

In [34], practical examples illustrating the imple-
mentation of the aforementioned features of Qibo are
provided. Additional examples are provided in the
Qibo documentation [52].

From the implementation point of view Qibo pro-
vides multiple execution backends which are responsi-
ble for the conversion and execution of the primitives
on different hardware. Each backend inherits from an
abstract interface which determines the set of meth-
ods that must be implemented in order to execute the
primitives of the language API.

At the current stage, we support simulation back-
ends on classical hardware and, through Qibolab,
the same high-level code can be executed directly on
quantum hardware. In practical terms, we can con-
sider Qibolab as an actual hardware backend, once a
specific platform is selected by the user. Furthermore,
this modularity opens the possibility to create further
tools which rely on Qibo and its backends. For ex-

ample, tools for quantum chemistry, multi-qubit cali-
bration routines, benchmarking, machine learning in-
spired algorithms and others, as well as the addition
of further backends for simulation or hardware execu-
tion.

2.2 Classical quantum simulation
Simulation is a crucial part of quantum computing re-
search, particularly in the current Noisy Intermediate-
Scale Quantum (NISQ) [53] era, where exact results
from simulation can be used for validating algorithms
or implementing error mitigation routines.
In Qibo, both gate-based and adiabatic quantum

computation paradigms can be simulated on classical
hardware. Thanks to its modularity, quantum algo-
rithms can be deployed on three different simulation
backends, which are designed to meet specific needs,
as represented in Fig. 1. In this section we summa-
rize the advantages and limitations of each backend
currently available in Qibo: numpy, tensorflow and
qibojit. We also highlight which backend is best
suited depending on the application.
The numpy backend is based on NumPy’s primi-

tives [54], as explained in more detail in [36]. It is a
lightweight backend, which supports single-threaded
CPU simulations with a moderate performance. This
setup is usually recommended for circuits up to 20
qubits. The importance of this backend lies in its
broad compatibility with many classical system ar-
chitectures, including arm64, which makes it a safe
and stable choice, especially in development contexts,
e.g. in laboratories where quantum platforms are be-
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Figure 2: Schematic description of the qibojit backend features.

ing installed and tested.

The second backend is based on TensorFlow [3]
primitives. Similarly to the numpy backend, it can be
used for tackling problems involving a limited num-
ber of qubits, although it allows to perform quantum
simulation on multi-threading CPU and single-GPU.
The tensorflow backend inherits TensorFlow’s opti-
mization routines, including state-of-the-art gradient-
based optimizers. This feature is particularly useful
in the context of Quantum Machine Learning (QML),
where automatic differentiation routines can be ex-
ploited for training hybrid quantum-classical machine
learning models [48].

Within the optimization module of Qibo, we
have implemented a function that uses the auto-
matic differentiation provided by TensorFlow to ex-
ecute gradient-based optimization strategies, namely
qibo.optimizers.sgd. This function can be cus-
tomized according to the developer needs on top the
features offered by TensorFlow itself. To execute this
function the usage of the tensorflow backend is re-
quired.

Typically, in Machine Learning, gradients are cal-
culated through the Back-Propagation (BP) algo-
rithm [55], which requires saving copies of matrices
and vectors during the process. Since TensorFlow
uses this method, the tensorflow backend requires
copies of the state vector during simulation, which
increases memory consumption and reduces perfor-
mance.

The third backend is qibojit [35], a high-
performance simulation backend which combines
Just-In-Time (JIT) compilation with the definition of
custom operators for state vector manipulation. Here,
the action of quantum gates is optimized, by consid-
ering matrix properties like sparsity and symmetries,
and by avoiding allocating new copies of matrices and
vectors, which are instead modified in-place. The
qibojit structure is shown in Fig. 2, which shows the
specific implementation adopted for CPU and GPU(s)
environments.

Multi-threading CPU, GPU and multi-GPU con-

figurations are supported by qibojit. Simulation on
CPUs are based on NumPy tensors and accelerated
with Numba [56], while for GPU and multi-GPUs ex-
ecutions, we adopt CuPy [57]. For GPUs two dif-
ferent acceleration strategies are implemented. First,
we exploit the Cupy’s RawKernel method, thanks to
which we can write custom CUDA kernels in C++
and seamlessly import them in Python. The second
accelerated simulator is implemented using primitives
from NVIDIA cuQuantum [58]. The qibojit backend
is the suggested choice for simulating systems with a
large number of qubits.

In Section 3.1 of [35], we have conducted bench-
marking tests using Qibo on different classical hard-
ware, focusing on significant quantum circuits like
Quantum Fourier Transform [59] and Bernstein-
Vazirani [60], as the number of qubits increases.
These benchmarks also include comparisons of Qibo’s
performance with other public quantum computing li-
braries.

Recognizing the importance of simulation, even as
technology advances and the quality of quantum de-
vices improves, we plan to improve Qibo from a sim-
ulation perspective. With this in mind, we are work-
ing on the development of new backends, support-
ing multi-node distribution of state vector simulation
and, by changing simulation method completely, the
construction of a tensor networks [61–65] backend.

2.3 Quantum hardware support
In the previous section we have shown how Qibo can
be used for quantum circuit simulation. Although
simulation is a useful tool for testing and profiling
quantum algorithms, we are still mainly interested on
deploying such algorithms on quantum processors to
show the advantages of this technology [66].

Quantum computers can be implemented using sev-
eral quantum systems, including superconducting cir-
cuits [67], trapped ions [68] or neutral atoms [69]
among others. In this paper, we focus on super-
conducting devices, but Qibolab provides an extensi-
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ble abstraction library to accommodate other quan-
tum technologies, the only precondition is that the
experimental setup should be composed by instru-
ments that communicate with each other and the
QPUs. As described broadly in Sect. 3.1, it is possi-
ble to mirror any experimental configuration by inher-
iting the Platform class, and deploying the suitable
Instruments and Qubits methods, specifying all con-
nections through Channels class. Transmons [70] are
one possible implementation of qubits through super-
conducting devices, which are weakly anharmonic os-
cillators made using Josephson junctions [71]. To per-
form measurements, transmons are dispersively cou-
pled to superconducting resonators which are in turn
coupled to a microwave transmission line.

Gates are implemented by coupling qubits through
microwave drive and flux [70] lines that carry control
pulses with precise amplitude and duration.

As shown in Fig. 1, Qibolab includes all the nec-
essary components to construct a backend for the de-
ployment of quantum algorithms on self-hosted quan-
tum processing units (QPUs). The addition of such
backend is facilitated by Qibo’s modular layout [36]
which enables users to create custom backends with
minimum effort. For the particular case of a hard-
ware backend this feature allows us to focus only on
low-level components.

Qibolab provides an API to define Pulse objects,
able to perform low-level manipulations such as ex-
ecuting a specific sequence of microwave pulses simi-
larly to other libraries [72–75]. Through this interface
it is possible to code easily both experiments and cal-
ibration protocols. Such abstraction is quite practical
given that instruments may have different definitions
for specific waveforms.

Another key element listed in Fig. 1 is the pres-
ence of drivers to control and interface Qibo with dif-
ferent instruments. To generate the appropriate mi-
crowave pulses needed to perform quantum gates, a
common approach is to use Arbitrary Waveform Gen-
erators (AWG), digital to analogue (DAC) and ana-
logue to digital converters (ADC) which are nowa-
days available through Field Programmable Gate Ar-
rays (FPGAs). All these devices usually provide li-
braries or packages to control them, e.g., Qblox In-
struments [76], Qcodes [31] and LabOneQ [74]. De-
spite such heterogeneity, Qibolab defines a common
interface to properly expose package methods re-
quired to control QPUs.

Finally Qibolab takes care of all the necessary op-
erations to prepare the execution of quantum circuits
on a fully characterized device. Among these, there
is a transpilation step of circuits to the native gates
supported by the quantum processor and a compila-
tion step to convert these gates to pulses. Sect. 3.3
presents a more precise description of the transpila-
tion step.

Fig. 3 shows a basic laboratory setup for control-

Qibolab client

Drive line

Flux line

Readout line

Feedback line

QPU

Control 

Figure 3: Basic setup of a self-hosted QPU. The host com-
puter running Qibolab communicates with the different elec-
tronics used to control a QPU.

ling a QPU. Qibolab is running on a host computer,
which communicates, typically via a network proto-
col, with the control electronics used for pulse gen-
eration. These electronics are connected to the QPU
via different channels: the readout and feedback chan-
nels in a closed loop for measuring the qubit, the
drive channel for applying gates and, for flux-tunable
qubits, the flux channels for tuning their frequency.

For a more detailed description of the Qibolab
backend, we invite the reader to check Sect. 3.1.

2.4 Hardware characterization
While the API provided by Qibolab enables full con-
trol over the electronics interacting with the qubits,
this alone is not sufficient for operating a quantum
computer. This is because the accurate fine-tuning
and calibration of control waveform parameters are
crucial requirements for quantum hardware to work
successfully [77].

Within the Qibo environment, Qibocal [78, 79] of-
fers the necessary tools for calibrating, characterizing,
and validating QPUs through a collection of platform
and instrument agnostic experiments, or routines.

Thanks to its modular design, it offers routines with
different abstraction layers, from low-level character-
ization routines, including Rabi and Ramsey experi-
ments, to gate-level characterization algorithms [80]
such as randomized benchmarking [81–85].

With Qibocal, it is possible to deploy various cali-
bration and characterization protocols and generate a
comprehensive HTML report summarizing the results.
Alongside the report, Qibocal also produces the new
platform configuration containing the fine-tuned pa-
rameters found.

When executing multiple experiments, these pa-
rameters can be updated at runtime, allowing for com-
plex routines with real time feedback. This feature
unlocks Qibocal’s potential to perform automatized
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hardware calibration, which will be presented in a fu-
ture manuscript in preparation [86].

3 Quantum computing drivers
Qibolab provides a unified framework for controlling
the different electronics that are needed to operate a
quantum computer. To achieve this, we provide soft-
ware abstractions and patterns that can be followed
by a laboratory in order to operate their self-hosted
devices. As a use case, we support drivers for multi-
ple commercial instruments, which we use to showcase
the library and provide benchmarks in Sec. 4. In the
following sections we describe the software abstrac-
tions and supported drivers in more detail.

3.1 Software abstractions
Qibolab provides two main interface objects: the
Pulse object for defining arbitrary pulses to be played
on qubits, and the Platform which is used to execute
these pulses on a specific QPU.
Pulses constitute the building blocks of programs

that are executed on quantum hardware. They can be
used to read the state of a qubit, drive it to change its
state, or flux a qubit to change its resonance frequency
and probe two-qubit interactions. Qibolab provides
pulse objects for each of these operation modes and
each Pulse object holds information about the am-
plitude, frequency, phase, start and duration of the
pulse, which are required for the generation of physi-
cal pulses. We also provide the functionality to gen-
erate waveforms of different shapes, such as Rectan-
gular, Gaussian or DRAG [87].
Real experiments involve playing multiple pulses on

different qubits. In Qibolab pulses can be aggregated
in a PulseSequence. The Pulse API provides flexi-
bility in scheduling such sequences by specifying when
each individual pulse starts in time and allowing over-
lapping pulses, which are essential for features such as
readout multiplexing [88].
Abstract sequences of pulses defined using the

Pulse API can be deployed on hardware using a
Platform. This core Qibolab object is used to orches-
trate the different instruments for qubit control. Each
Platform instance corresponds to a specific quantum
chip controlled by a specific set of instruments. It
allows users to execute a single sequence, a batch
of sequences, or perform a sweep, in which one or
more pulse parameters are being updated in real-time,
within the control instrument. Real-time sweeps or
executing sequences in batches, significantly speeds
up qubit calibration and characterization procedures.

Platform is comprised of different objects as shown
in Fig. 4. Qubit objects are representations of the
physical qubits. They contain information about
physical parameters associated to a qubit that are
measured during calibration and characterization [89,

90], such as coherence times T1 and T2, or the param-
eters of pulses and sequences needed for single-qubit
native gates. Similarly, QubitPair objects contain
information about the neighboring pairs of qubits in
a chip and the corresponding two-qubit native gates.
The topology of the chip is extracted from the avail-
able pairs and is used by the transpiler presented in
Sec. 3.3.

Platform holds a collection of Instrument ob-
jects which contain the low-level drivers for operating
the laboratory equipment. The abstract Instrument
class contains the methods one needs to implement
when interfacing Qibolab to the libraries provided by
the instrument’s manufacturers, so that the instru-
ment can be used as part of a larger instrument setup
compatible with all functionalities provided by the
Qibo framework. Controller is a subclass used by
instruments that have arbitrary waveform generators
and can play and acquire pulses. Qibolab provides
pre-coded driver implementations for several commer-
cial qubit control instruments, as described in Sec. 3.2.
Finally, Channel represents a connection from

qubits to instruments. Through the Port object it
also implements an interface for controlling instru-
ment parameters. This connection is essential for
playing pulses from the instrument port that targets
the desired qubit. It also provides a qubit-centric in-
terface for setting instrument parameters, which is
useful in calibration routines.

To operate a real QPU, one needs to create a
Platform that mirrors the channel and instrument
configuration of the lab, following the example shown
in Fig. 3. The procedure is outlined in the following
steps:

1. instantiate Instrument objects for all instru-
ments in the lab setup;

2. create Channel objects for all connections be-
tween instruments and qubits, and map them to
the corresponding instrument ports. Auxiliary
instruments such as local oscillators can also be
mapped to a Channel;

3. create a Qubit object for each qubit;

4. assign all applicable channels (readout,
feedback, drive, flux, twpa) to each Qubit.
Note that a qubit may not have all of these
channels and a channel may be shared among
different qubits.

Some parameters involved in this procedure, such
as qubit-channel and channel-instrument connections
and instrument IP addresses are static, while others,
such as the parameters of the pulses that are imple-
menting the native gates, change dynamically dur-
ing qubit calibration. It is important to distinguish
these two categories and handle them separately in
the code. Static parameters are typically hard-coded
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in the Platform generation, while dynamic parame-
ters are loaded as external data. More details on how
a custom Platform can be written for a specific lab
setup can be found in the online documentation [91].
If the parameters of an existing platform are updated,
for example through a calibration routine, it is pos-
sible to dump the new parameters on disk using se-
rialization methods [92]. Parameters are uploaded to
the respective devices using their specific API, which
is abstracted by the Platform interface.

Executing a program on the created Platform is
also a multi-step process. Users can write their pro-
grams using the Qibolab Pulse API or the Qibo
Circuit API. The former is commonly used for low-
level applications such as qubit calibration, while the
latter is needed for executing quantum algorithms.
Execution of circuits involves additional steps. First,
they are transpiled (see Sec. 3.3) to new circuits that
respect the QPU connectivity and native gates. Sec-
ondly, native gates are compiled to pulses following a
set of rules which are held in the Compiler object of
the Qibolab backend. Once a PulseSequence is avail-
able, either directly or from compilation of a circuit,
it can be deployed using a Platform. The Platform
will send each pulse to the appropriate instrument
ports and acquire feedback associated to measure-
ments. This will be returned to the user according to
the specified format. The Qibolab port is an internal
abstraction, that takes care of bridging the gap be-
tween the Qibolab compiled PulseSequence and the
output format to the specific input and output de-
fined by each device. Available formats are classified
shots (0 or 1), integrated and demodulated voltage
signals, or raw waveform signals. All formats can be
obtained as single shots or averaged. More details on
the different result formats can be found in the online
documentation [93].

3.2 Supported drivers
Version 0.1.0 of the Qibolab package provides exten-
sive support for various devices used in quantum hard-

ware control. Specifically, it supports devices devel-
oped by Qblox [94], Quantum Machines [95], Zurich
Instruments [96], as well as RFSoC (Radio Frequency
System on Chip) FPGAs (Field Programmable Gate
Arrays) supported by the Qick project [97] and by
Qibosoq [98]. Each of these devices possesses dis-
tinct requirements and operational methods, necessi-
tating meticulous attention to ensure seamless control
through a unified interface. In more detail:

Qblox the Qblox Instruments cluster [99] where we
tested Qibolab is composed of several modular
devices controlled as one. The Qblox Cluster
is the scalable 19” rack instrument that can be
configured with a combination of up to 20 mod-
ules that can control and readout qubits over a
wide frequency range (up to 18.5 GHz). Our
setup to control 5 superconducting flux tunable
qubits without coupler mediated interactions is
composed by:

QRM-RF two Qubit Readout Modules [100]
with one input channel and one output
channel in the radio-frequency regime and
2 digital markers. The module provides
all necessary capabilities for qubit readout
without external up or down conversion for
signals in the range of 2-18.5GHz.

QCM-RF three Qubit Control Modules [101]
with two drive channels per module
dedicated to the qubit control using
parametrized pulses, that allows the user to
control up to 5 qubits.

QCM two QCM modules [102] to control the
DC voltage applied to the flux channels
of the qubits and generate the flux pulses
needed to implement two-qubit gates. The
dynamic output range of the DACs (digital-
to-analog converters) of the Quantum Con-
trol Modules is 5 Vpp, the difference be-
tween the highest and the lowest voltage val-
ues in a AC signal, with a 1Gsps sampling
rate.

Accepted in Quantum 2024-02-02, click title to verify. Published under CC-BY 4.0. 7



The system synchronization of the signals be-
tween the modules is made by the Qblox Clus-
ter using SYNQ [103] protocols. The high-level
interface for the devices comes from Qblox In-
struments [76] and Qcodes [104] Python-based
libraries, and the low-level communication with
the sequencers is made using assembly code
(Q1ASM) [105]. This setup allows control of 5+
flux tunable superconducting qubits.

Quantum Machines Qibolab has been tested in
controlling a cluster of nine OPX+ con-
trollers [106], and communicate with an all-to-all
connectivity to support fast feedback operations
between any pair of controllers. The synchroniza-
tion and clock distribution is handled by OPT
devices. Each OPX+ controller has ten analogue
output ports, ten digital output ports and two in-
put ports, making the cluster capable of control-
ling 25+ flux tunable capacitively coupled qubits.
The main disadvantage of our OPX+ controllers,
compared to other instruments used in this work,
is that the IQ mixing and upconversion are not
taken care internally and there is small band-
width for the intermediate frequency (400MHz)
and output voltage (0.5V). Due to these limita-
tions, additional external instruments including
local oscillators, mixers and sometimes amplifiers
are needed to successfully drive and flux qubits.
The Qibolab driver is controlling the whole clus-
ter as a single instrument using the QUA li-
brary [75]. This library exposes many low-level
operations to Python via an intuitive but rich
set of commands, which expands beyond simple
pulse scheduling and includes conditional logic,
loops and complex mathematical operations.

Zurich Instruments the Zurich Instruments clus-
ter where we tested Qibolab is composed of sev-
eral modular devices controlled as one.

SHFQC a single SHFQC [107], that can control
the drive and readout of up to 6 supercon-
ducting qubits connected to the same read-
out probe. The IQ mixing and upconver-
sion are taken care of internally by using
a proprietary cleaner signal upconversion
and downconversion scheme [108] with an
instantaneous bandwidth around 1.2 GHz
without the need for calibration. They also
provide an output voltage of 2 Vpp.

HDAWG two HDAWGs [109] to provide up to
8 DC-coupled single-ended analogue output
channels each to control the flux pulses re-
quired to interact with qubits and couplers.
Up to 5 Vpp output voltage.

PQSC A single PQSC [110], to synchronize the
previous devices via the low-latency, real-
time communication link ZSync. The PQSC

Device Firmware Software
Qblox 0.4.0 qblox-instruments 0.9.0
QM QOP213 qm-qua 1.1.1
Zurich Latest (July 2023)a LabOneQ 2.7.0
RFSoCs Qick 0.2.135 Qibosoq 0.0.3
Erasynth++ - -
R&S SGS100A - QCoDeS 0.37.0

aSee appendix [6.1]

Table 1: Outline of the supported devices, along with
firmware/software version currently supported.

comes with 18 ZSync ports to distribute
the system clock and synchronize the in-
struments. Furthermore, the links provide
a bidirectional data interface to send qubit
readout results to the PQSC for central pro-
cessing and send trigger signals to the slave
instruments for feedback.

The high-level interface for the devices comes
from the Python-based LabOneQ library [74].
This setup allows control of 5+ flux tunable
superconducting qubits with tunable coupler-
mediated interactions.

RFSoCs the RFSoCs supported by Qibolab
currently include the RFSoC4x2 [111], the
ZCU111 [112], and the ZCU216 [113] manu-
factured by Xilinx. These FPGAs possess a
unique feature of offering direct RF synthesis
capability up to ≈ 9.8 GHz. This simplifies the
experimental setup by eliminating the need for
additional local oscillators and IQ mixers. To
interact with the Qick firmware, the driver relies
on a server that runs on board called Qibosoq.
Both the Qibosoq server and the Qick firmware
are open source, reducing costs for setting up
a new laboratory. However, it is important to
note that these boards have limitations in terms
of the number of qubits they can control, can
be challenging to synchronize in multi-board
setups and, in general, the software supports less
features than other devices.

In addition to the devices responsible for synthesiz-
ing pulses to control the qubits and acquiring signals
for measurements, a comprehensive quantum control
system relies on additional devices. Among these, lo-
cal oscillators play a crucial role in up and down con-
verting microwave signals for some of our devices and
pumping the TWPAs. Integrating local oscillators
within the same framework is essential since they need
to be calibrated and turned on and off during the con-
trol process. Qibolab facilitates seamless integration
of these devices and includes drivers for Erasynth and
Rohde&Schwarz local oscillators in version 0.1.0.
An outline of the supported instruments is pre-

sented in Table 1, while in Table 2 we present an
overview of the primary features supported by the
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Feature RFSoCs Qblox QM Zhinst
Arbitrary pulse sequences
Arbitrary waveforms a

Multiplexed readout
Hardware classification
Fast reset
Device simulation
RTS frequency b

RTS amplitude
RTS duration
RTS start
RTS relative phase
RTS 2D any combination
Sequence unrolling
Hardware averaging
Singleshot (No Averaging)
Integrated acquisition
Classified acquisition
Raw waveform acquisition

aSweeper capabilities may be reduced by using arbitrary
pulses instead of driver defined ones.

bRTS on the frequency of readout pulses not supported.

Table 2: Features or limitations of the main drivers sup-
ported by Qibolab 0.1.0. The features denoted by “ ”
are supported, “ ” means not supported and “ ” under
development.

drivers included with Qibolab version 0.1.0. It is
important to note that while some limitations and
missing features are currently present, they are not
necessarily inherent to the devices themselves and will
be addressed in future versions of Qibolab.

The following is a description of the features pre-
sented in Table 2.

Arbitrary pulse sequences the capability of ex-
ecuting arbitrary pulse sequences defined in
Qibolab, which is a fundamental requirement of
a driver. This feature is not related to the exe-
cution of pulses with arbitrary waveform shapes.

Arbitrary waveforms the capability of executing
pulse waveforms of arbitrary shape. For drivers
that do not support this feature, rectangular,
Gaussian and DRAG waveforms can still be syn-
thesized.

Multiplexed readout allows playing and acquiring
multiple multiplexed pulses through the same
line. It is particularly useful for multi-qubit
chips where the readout line is commonly shared
among multiple qubits.

Hardware classification the capability of doing
single shot measurement classification during the
execution of a pulse sequence.

Fast reset the capability of actively resetting the
state of a qubit to zero after a measurement.
This feature requires hardware classification and
enables faster executions of repeated pulse se-
quences.

Device simulation the possibility of simulating in
advance the pulses to be executed, without di-
rectly using quantum hardware.

RTS frequency RTS (Real Time Sweeper) refers to
the capability of executing a pulse sequence mul-
tiple times with different values of, in this case,
the frequency of a pulse. This feature facilitates
faster qubit characterization and experiments.

RTS amplitude real-time sweeping of the ampli-
tude of a pulse.

RTS duration real-time sweeping of the duration of
a pulse.

RTS start real-time sweeping of the start time of a
pulse.

RTS relative phase real-time sweeping of the rela-
tive phase of a pulse.

RTS 2D the capability of combining two RTS scans
on different parameters.

Sequence unrolling the capability of unrolling sev-
eral smaller subsequences into a longer single se-
quence as in loop unrolling. It aims to decrease
the overall time spent on compilation and com-
munication steps by reducing its amount from
once every subsequence to once every unrolled
sequence.

Hardware averaging the capability of repeating
the same experiment multiple times and obtain,
directly from the device, averaged results.

Singleshot (No Averaging) the capability of ob-
taining from the devices all the non-averaged re-
sults.

Integrated acquisition the capability of acquir-
ing complex signals [114] with ”in-phase” and
”quadrature” (IQ) components demodulated and
integrated for the measuring time.

Classified acquisition the capability of performing
0-1 state classification after the integrated acqui-
sition.

Raw waveform acquisition the capability of ac-
quiring non-integrated IQ waveform values.

3.3 Transpiler
Logical quantum circuits for quantum algorithms are
hardware agnostic. Usually an all-to-all qubit connec-
tivity is assumed while most current hardware only al-
lows the execution of two-qubit gates on a restricted
subset of qubit pairs. Moreover, quantum devices are
restricted to executing a subset of gates, referred to
as native [115]. This means that, in order to execute
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circuits on a real quantum chip, they must be trans-
formed into an equivalent, hardware specific, circuit.
The transformation of the circuit is carried out by
the transpiler through the resolution of two key steps:
connectivity matching [116] and native gates decom-
position [117]. In order to execute a gate between
two qubits that are not directly connected SWAP
gates [118] are required. This procedure is called
routing. As on NISQ devices two-qubit gates are
a large source of noise, this procedure generates an
overall noisier circuit. Therefore, the goal of an effi-
cient routing algorithm is to minimize the number of
SWAP gates introduced. An important step to ease
the connectivity problem, is finding an optimal initial
mapping between logical and physical qubits. This
step is called placement. The native gates decom-
position in the transpiling procedure is performed by
the unroller. An optimal decomposition uses the least
amount of two-qubit native gates. It is also possible to
reduce the number of gates of the resulting circuit by
exploiting commutation relations [119], KAK decom-
position [120] or machine learning techniques [121].

Qibolab implements a built-in transpiler with cus-
tomizable options for each step. The main algorithms
that can be used at each transpiler step are reported
below with a short description. The initial placement
can be found with one of the following procedures:

• Trivial: logical-physical qubit mapping is an
identity.

• Custom: custom logical-physical qubit mapping.
• Random greedy: the best mapping is found
within a set of random layouts based on a greedy
policy.

• Subgraph isomorphism: the initial mapping is
the one that guarantees the execution of most
gates at the beginning of the circuit without in-
troducing any SWAP.

• Reverse traversal: this technique uses one or
more reverse routing passes to find an optimal
mapping by starting from a trivial layout [122].

The routing problem can be solved with the following
algorithms:

• Shortest paths: when unconnected logical qubits
have to interact, they are moved on the chip on
the shortest path connecting them. When multi-
ple shortest paths are present, the one that also
matches the largest number of the following two-
qubit gates is chosen.

• SABRE [122]: this heuristic routing technique
uses a customizable cost function to add SWAP
gates that reduce the distance between uncon-
nected qubits involved in two-qubit gates.

Qibolab unroller applies recursively a set of hard-
coded gates decompositions in order to translate any
gate into single and two-qubit native gates. Single
qubit gates are translated into U3, RX, RZ, X and
Z gates. It is possible to fuse multiple single qubit
gates acting on the same qubit into a single U3 gate.
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Figure 5: Benchmark of the performance of the built-in
Qibolab transpilers (routing pass) evaluated considering the
CNOT overhead. Circuits of different types have been con-
sidered in order to test the transpilers on both structured and
unstructured circuits. In particular we have considered a five
qubits QFT circuit and random circuits with 5, 20 and 100
gates. The results for random circuits have been averaged
over 50 circuits.

For the two-qubit native gates it is possible to use
CZ and/or iSWAP. When both CZ and iSWAP gates
are available the chosen decomposition is the one that
minimizes the use of two-qubit gates.

The benchmarking of a full transpiling pipeline can
be complex, as the results may vary in different chip
architectures and a trade-off between performance
and execution time needs to be taken into account.
We remand the general benchmarking problem to the
specific literature [123] and we focus on a more spe-
cific use-case. Fig. 5 reports the performance of the
routing pass algorithms implemented in Qibolab on
a five qubit chip with a star connectivity. In this kind
of chip five qubits are arranged with a central qubit
connected to all the remaining four qubits. The algo-
rithm performance has been evaluated as the CNOT
overhead. That is the number of CNOT gates on the
routed circuit divided by the number of CNOT gates
in the original circuit. The algorithm performance
has been tested on five qubit circuits composed of 10,
20 and 100 CNOT gates, taking an average over 50
random circuits. Moreover, we have tested the algo-
rithms on a structured circuit: the five qubits QFT.
The SABRE algorithm has been tested with and with-
out the lookahead. The results have been compared
with transpiler designed for that connectivity (star
transpiler) that swaps the central qubit in the chip
based on the successive gate. All the routing algo-
rithms have been tested starting from an initial trivial
layout except for the star transpiler that has a built-it
placer, this explains the better performance of this al-
gorithm on short circuits. Fig. 5 shows that SABRE
with a lookahead reaches the best performance on the
star connectivity chip. The execution time on this
simple case is not significant as all algorithms perform
in a fraction of second even for the longer circuits.
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However, other tests has shown that the scalability of
SABRE is better than shortest paths as the number of
possible shortest paths increases drastically with the
number of qubits in highly connected chips. In sum-
mary, Qibolab transpiler shows good performance in
making abstract quantum circuits executable on small
NISQ devices. In the future we aim at developing new
efficient and scalable algorithms for the next genera-
tion quantum chips with a high number of qubits.

4 Application results
4.1 Cross-platform benchmark
In this section, we present the results of a speed
benchmark conducted using Qibolab. The bench-
mark involved various experiments deployed on the
different control devices currently supported by the
drivers implemented in Qibolab.
By utilizing Qibolab, assessing the performance

and efficiency of each control device becomes a
straightforward process, since all devices are exposed
through the same interface. The results obtained
not only offer valuable insights into the speed of
the different instruments, offering data that can help
researchers and developers to make informed deci-
sions, but also demonstrate the comprehensive sup-
port these devices receive within Qibolab.
The experiments chosen for this benchmark repre-

sent the minimal set of routines required for the cal-
ibration of a single qubit. They also offer a view of
the different execution modes supported by Qibolab:
in particular the Single shot classification experiment
executes fixed pulses sequences, while the Spectro-
scopies perform different sweeps over pulse param-
eters.
In Fig. 6 we present a comparison of execution times

for different qubit calibration routines executed using
different electronics. Additional details for each rou-
tine are provided in the Appendix 6.2. The black bar
in this plot provides the ideal time required for each
routine, which, in most cases, is calculated as

ideal = nshots
∑

i

(Tsequence,i + Trelaxation) (1)

where Tsequence,i is the duration of the whole pulse se-
quence in the i-th point of the sweep, Trelaxation the
time we wait for the qubit to relax to its ground state
between experiments, nshots the number of shots in
each experiment and the sum runs over all points
in the sweep. The ideal time denotes how long the
qubit is really used during an experiment and pro-
vides the baseline for our benchmark. Real execu-
tions, shown with a different color for each instrument
setup, are longer than ideal, due to overhead coming
from compilations and communication to the instru-
ments. After profiling the code, we observe that the
overhead coming from the Qibolab backend, Tqibo,

is negligible compared to that of the control instru-
ments, Tinst. Therefore, we can approximate the real
execution time as

real = Tqibo + Tinst + ideal ≂ Tinst + ideal (2)

There is a decisive factor regarding the performance
of routines that involve sweeps. That is, whether the
sweeps run in real-time in the processors embedded in
the control electronics or the host computer. The lat-
ter approach requires a greater number of communi-
cation steps between control electronics and host and
typically the programs need to be recompiled multiple
times resulting in significant overhead. This can be
seen in the Ramsey detuned and standard Randomized
Benchmarking (RB) experiments, for which real time
sweepers have not been implemented yet, resulting
to a significant overhead over the ideal time. Ran-
domized Benchmarking experiments, unlike the rest
of routines used here, involve playing multiple ran-
dom sequences instead of sweeping parameters and
their performance is expected to increase when se-
quence unrolling will be implemented.

The second point affecting performance is the com-
munication with the host computer. This usually in-
volves two steps, the actual communication via net-
work (ethernet) and a compilation step happening
on the instrument side. We observe that RFSoC
boards controlled using Qibosoq have an advantage
in this, particularly from Ramsey detuned and Single
shot classification where real-time sweepers are not
used. This advantage may be due to the simplicity
of our RFSoC configuration, which consists of a sin-
gle board, in contrast to the other systems which are
part of clusters with more controllers. More investiga-
tion is needed to confirm this point. As expected, the
rest of electronics behave similarly in all performed
benchmarks.

In Fig. 7 we demonstrate how execution time of dif-
ferent sweeps scales with the number of points used
in the sweep. Similarly to above, we see that RFSoC
is faster for short sweeps, due to smaller communi-
cation and compilation overhead, however the differ-
ence diminishes when we cross 100 points. Other in-
struments show similar behavior in most cases. Qick
does not support real-time sweeping of readout fre-
quency and pulse length, therefore these sweepers are
slower when compared to other instruments for more
than 100 points. Real-time sweepers are used in all
cases presented in this plot, except in Circuits. We are
currently implementing sequence unrolling methods,
which will allow executing batches of circuits, reduc-
ing the communication overhead and thus improving
runtime.

The code used for all benchmarks presented in this
section is provided in a public repository [124].
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Figure 8: Results of single-qubit randomized benchmark-
ing experiment implemented in Qibo and executed with
Qibocal on a 5-qubit IQM chip controlled by Qibolab’s
Zurich Instruments drivers. Average relative frequency (sur-
vival probability) of classified 0s of 128 single-shot mea-
surements (orange) for random sequences of single-qubit
Clifford gates of different length and mean over 256 ran-
dom sequences (blue). The exponential fit is described by
m 7→ 0.38(2) ·0.9971(3)m +0.55(2). This corresponds to an
average gate fidelity of 0.9986(2) and a π/2-pulse fidelity of
0.9992(1). Errors are the standard deviation of 1000 ‘semi-
parametric’ bootstrapping samples (of binomial random vari-
ables with parameter drawn from the empirically observed
distribution of relative frequencies).

4.2 Standard randomized benchmarking

The commonly used technique for assessing the accu-
racy of single qubit gate implementations is standard
randomized benchmarking (RB) [81–85] with the Clif-
ford group (see, e.g., Ref. [80] for a review). The RB
protocol performs random sequences of Clifford uni-
taries of different lengths on a single qubit. Every
sequence is concluded with the unitary gate that re-
stores the initial state before measuring the qubit. In
the absence of imperfections, the measurement, thus,
is expected to be classified as 0 (the initial state)
with probability 1 independent of the sequence or its
length. Single qubit gate fidelities are defined as func-
tions of the decay parameter of this average survival
probability with the sequence length.

RB allows us to holistically test the entire software
stack together with the quantum hardware. We define
the RB protocol with the Circuit API of Qibo, us-
ing U3, RX, RY and RZ gates. Executing them with
the Qibolab backend involves transpilation to native
gates and compilation to PulseSequence objects that
are then executed by a Platform. An example of an
RB experiment on a 5-qubit IQM chip controlled us-
ing Qibolab’s Zurich Instruments drivers is depicted
in Fig. 8.
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Figure 9: Results of bare (yellow) and mitigated (red) CHSH
values from an experiment on two qubits on a 5-qubit Quant-
Ware chip controlled via Qibolab’s Qblox drivers. Read-
out error mitigation significantly enhances the results of the
CHSH inequality, bringing it past the classical bound (blue
line). The initial entangled state prepared for this experiment
is (|01⟩ − |10⟩)/

√
2. The significant improvement produced

by readout error mitigation hints that readout error domi-
nates in the deterioration of the experimental results.

4.3 CHSH Experiment
A quantum software solution should allow for the de-
velopment and deployment of quantum experiments
at different levels of abstraction and complexity. In
order to showcase this, we prepare an experiment
to measure the CHSH inequality [125] between two
qubits by building the circuit using three distinct
methods allowed by Qibo and Qibolab. Namely, one
can build experiments by directly accessing the arbi-
trary pulse sequences of Qibolab, use the native gate
interactions through Qibo, or use logical gate opera-
tions and rely on the transpiler for the decomposition.
In addition, we incorporate a layer of Readout Error
Mitigation [42] that is executed on hardware before
the experiment takes place. This type of control is
only possible with framework aware of all layers of
abstraction such as Qibo.
The CHSH inequality was originally conceived in

order to disprove a local hidden-variable description
of quantum mechanics and used to prove Bell’s theo-
rem [126]. The protocol consists of preparing a max-
imally entangled two-qubit state, and performing a
simultaneous measurement on both qubits, with two
possible measurement settings. Crucially, a qubit can
be measured in two perpendicular basis (e.g. X, Z),
and the measurement settings of both qubits have a
relative angle θ. Then, the combination of the result-
ing expectation values

S = E(a, b) − E(a, b′) + E(a′, b) + E(a′, b′), (3)

should be
∣∣S∣∣ ≤ 2 if there is a local hidden-variable

theory of quantum mechanics, but go beyond, up to
2
√

2, if not.
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Figure 10: Estimates of Ndata = 50 points of the u-quark
PDF using the 1-qubit device controlled by the RFSoC. The
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the estimations with the trained model and then calculat-
ing means and standard deviation of the mean of the Nruns
predictions. In particular, the two confidence intervals are
computed using 1σ and 2σ errors.

In this context, the CHSH experiment is used as
validation of both the specifications of the machine
and control electronics. Far from disproving local re-
alism, we use this procedure to verify that the control
of our chip is precise enough to violate the classical
bound. We show in Fig. 9 the results of a CHSH ex-
periment on two connected qubits of a 5-qubit Quant-
Ware chip controlled using Qibolab’s Qblox drivers
for different angles of the measurement setting. The
bare values of the CHSH barely cross above the clas-
sical bound. However, when readout error mitigation
is applied, the values confidently cross above 2. We
infer from this figure that the most destructive source
of error was in the readout of the measurement pulse,
rather than on the control of the two-qubit gate pulse.

4.4 Full-stack quantum machine learning
Developing QML algorithms [127–129] is particularly
challenging in the NISQ era [53]. Noise and long
execution times are two of the most limiting prob-
lems while deploying a Variational Quantum Algo-
rithm [130, 131] on a real quantum device. In this
context, it is relevant to study how the different lev-
els of computation, from the high-level coding of the
algorithm to the low-level deployment on the real
qubits, impact the results obtained on simple regres-
sion or classification tasks. For this reason, Qibo
has become the perfect environment to study both
hybdrid [48, 132–134] and full-stack [135] QML algo-
rithms.

We define a QML model by building a Variational
Quantum Circuit (VQC), in whose rotational gates
we encode the u-quark Parton Distribution Func-

tion (PDF) data picked up from the NNPDF4.0 [136]
PDF grid. In particular, we consider as input data
Ndata = 50 values of the momentum fraction x, sam-
pled logarithmically from the range [0, 1]. We use
the model presented in [132], in which the embedding
of the x values is implemented following a data re-
uploading ansatz [137].

The optimization strategy is then implemented by
minimizing a target Mean-Squared Error loss function
with respect to the model’s parameters. We select a
hardware-compatible Adam [138] optimizer, in which
we calculate the derivatives of the circuit using the
Parameter Shift Rule [129, 135, 139]. Once obtained
the optimized parameters vector θbest, we inject them
into the circuit and repeat the predictions Nruns = 50
times. With the mean and the standard deviation σ
of these evaluations we calculate our final estimates
and their errors. Finally, we quantify the accuracy of
the model by computing the following test statistics:

MSE = 1
Ndata

Ndata∑
j=1

(
yj,est − yj,target

)2
, (4)

where yj,target is the target PDF value provided by
NNPDF4.0 and yj,est is the mean of the Nruns pre-
dicted values for a fixed data xj .

We perform an initial training in exact simulation
using Qibo, followed by Nepochs = 60 stochastic Adam
descent iterations on a single superconducting qubit
controlled by RFSoC via Qibosoq [98]. After complet-
ing the training, those corresponding to the epoch in
which we recorded the lowest loss function value are
chosen as the final parameters. Each prediction dur-
ing the gradient descent is obtained by executing the
circuit Nnshots = 500 times and we set a learning rate
equal to η = 0.1. Adam’s parameters are set to be
β1 = 0.85, β2 = 0.99 and ε = 10−8.

In Fig. 10 we show the obtained results after re-
peating the PDF predictions Nruns = 50 times for
each data: the solid orange line is drawn using the
means of the predictions {yj,est}Ndata

j=1 , while the two
confidence intervals are obtained one and two stan-
dard deviations from the means. The test statistic
value presented in Eq. (4) and calculated with our
predictions is MSE = 0.0021. These results show
the entire ecosystem can be used to successfully fit
the target function even without any error mitigation
technique.

5 Outlook
In this paper we extend the Qibo quantum comput-
ing middleware framework by introducing Qibolab,
an open-source software library for quantum hard-
ware control. Qibo is designed as a full-stack soft-
ware framework which provides primitives to de-
fine circuit-based quantum algorithms through cus-
tom backends, i.e. dedicated plugin software libraries
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which deploy algorithms on specific hardware. The
release of Qibolab unlocks Qibo’s potential to exe-
cute quantum algorithms on hardware platforms and
therefore grant to research institutions and labora-
tories the possibility to operate self-hosted quantum
hardware platforms easily.
We have described the current status of the project

structure with the major features implemented in re-
lease 0.1.0. The software abstractions, supported
drivers and transpiler are at the stage of allowing ap-
plications related to cross-platform control instrument
performance benchmarks through arbitrary pulse con-
trol and physics experiments based on the quantum
circuit representation.

Furthermore, we have demonstrated successfully
three practical-cases in which Qibolab could be use-
ful for quantum technology research: randomized
benchmarking, validation algorithms for qubit entan-
glement (CHSH experiment) and quantum machine
learning applications. Therefore, circuit-based mod-
els available in Qibo can be deployed seamlessly on
quantum hardware through Qibolab.
In the future releases of Qibolab, we plan to extend

its capabilities by interfacing new drivers from more
commercial and open-source control system vendors.
Thanks to the design of the library, we have the pos-
sibility to adapt and scale the API for new electronics
including large-scale systems for real-time acquisition
and error correction. On the other hand, in this pa-
per we have focused on superconducting chips due to
its availability in our affiliated institution labs, how-
ever we plan to extend Qibolab to other quantum
technologies such as trapped ions, neutral atoms and
photonics among others. In fact, there are multiple
software similarities among these technologies, e.g. for
trapped ions we can already define in Qibolab a cus-
tom platform which allocates the relevant pulse se-
quence to modulate optical lasers with its native gates
representation for unitary gate preparation. We plan
to have access to this and other quantum hardware
technologies in the next years through research col-
laborations and extend Qibolab accordingly. Finally,
we believe that with the inclusion of Qibolab, Qibo
has grown into a powerful tool for the quantum com-
puting community, by reducing the effort of software
development for researchers in simulation, hardware
calibration and operation.
The code implementing the Qibolab module is

available at:

https://github.com/qiboteam/qibolab.
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[73] H. Silvério, S. Grijalva, C. Dalyac, L. Leclerc,
P. J. Karalekas, N. Shammah, M. Beji, L.-P.
Henry, and L. Henriet, Quantum 6, 629 (2022).

[74] ZurichInstruments, https://www.zhinst.com/
others/en/quantum-computing-systems/
labone-q (2023).

[75] L. Ella, L. Leandro, O. Wertheim, Y. Romach,
R. Szmuk, Y. Knol, N. Ofek, I. Sivan, and
Y. Cohen, Quantum-classical processing and
benchmarking at the pulse-level (2023).

[76] Qblox, https://qblox-qblox-instruments.
readthedocs-hosted.com/en/master/
(2023).

[77] M. Naghiloo, Introduction to experimental
quantum measurement with superconducting
qubits (2019).

[78] A. Pasquale et al., qiboteam/qibocal: Qibocal
0.0.1 (2023).

[79] A. Pasquale, S. Efthymiou, S. Ramos-Calderer,
J. Wilkens, I. Roth, and S. Carrazza, Towards
an open-source framework to perform quantum
calibration and characterization (2023).

[80] M. Kliesch and I. Roth, PRX Quantum 2,
010201 (2021).

[81] J. Emerson, R. Alicki, and K. Zyczkowski, J.
Opt. B 7, S347 (2005).

[82] E. Knill, D. Leibfried, R. Reichle, J. Britton,
R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri,
S. Seidelin, and D. J. Wineland, Physical Re-
view A 77, 10.1103/physreva.77.012307 (2008).
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6 Appendix
6.1 Zurich Instruments firmware
Table 3 shows the firmware version of each Zurich
Instruments device used in this work.

Device Firmware HDL
HDAWG Control 69121 69120
HDAWG Processing 69121 69080
PQSC 69076 69076
SHFQC 69120 69098

Table 3: Zurich FPGA internal controller software and HDL
revision.

6.2 Cross-platform benchmark
In this section we provide some more details on the ex-
periments performed for the performance benchmark
presented in Sec. 4.1. A more detailed description
of these routines is given by [66, 67, 77]. All these
experiments were repeated for 4096 shots. For spec-
troscopies, a relaxation time of 5 µs was used, while
for the other experiments it was set at 300 µs. Re-
laxation time is the waiting time between consecutive
shots to let the qubit relax back to the ground state
before the next shot is started.

Resonator spectroscopy consists of a single-tone
spectroscopy where a pulse is sent through the
readout line and acquired through the feedback
line. The frequency of the pulse is swept in a
specific range, in our case probing 20 or 100 dif-
ferent frequencies. In the calibration of a 3D (2D)
resonator, the amplitudes acquired present a pos-
itive (negative) peak at the resonance frequency
of the resonator.

Qubit spectroscopy consists of a two-tone spec-
troscopy where a first pulse is sent to the drive
line and a measurement (a readout pulse and
an acquisition) is performed right after. The
frequency of the drive pulse is swept in a spe-
cific range. In the example used for the bench-
mark, 300 frequencies were analyzed. As per the
resonator spectroscopy, the amplitude acquired
presents a peak for a specific frequency that, in
this case, will be used as the drive pulse fre-
quency.

Rabi amplitude first a drive pulse, at the fre-
quency identified with qubit spectroscopy, is sent
through the drive line and a measurement is per-
formed right after. The amplitude of the first
pulse is swept in a range composed of, in this
case, 75 points. This experiment is used to cali-
brate the amplitude of the pi-pulse (Pauli-X gate)
which rotates the qubits from the |0⟩ state to |1⟩.
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Ramsey detuned a first pulse is sent through the
drive line. Then, after a delay, a new drive pulse
is sent with a delay dependent phase and finally
a measurement is performed. The delay between
the two drive pulses, and therefore the phase, are
swept. This experiment is used to fine tune the
drive pulse frequency.

T1 experiment the qubit is excited using a cali-
brated pi-pulse, then measured after a variable
time. The characteristic decay shown by this ex-
periment is used to measure the relaxation time
T1 of the qubit.

T2 experiment this experiment is almost identical
to the Ramsey detuned experiment, but no ad-
ditional phase is introduced in the second drive
pulse. This enables to compute the characteristic
dephasing time T2.

Single shot classification The qubit is first just
measured at the initial |0⟩ state, and then ex-
cited and measured in the |1⟩ state. The results
are used to calibrate the classification between
measured states.

Standard RB First, a certain number (iterations)
of circuits composed of Clifford gates is randomly
generated. These circuits are executed and an
average fidelity is computed. Then, new circuits
are generated with increased depth and the pro-
cedure is repeated. The fidelity is supposed to
decrease exponentially with the number of gates
per circuit, leading to an estimation of the aver-
age error per gate.
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