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Quantum generative models, in providing inherently efficient sampling strategies, show promise for
achieving a near-term advantage on quantum hardware. Nonetheless, important questions remain
regarding their scalability. In this work, we investigate the barriers to the trainability of quantum
generative models posed by barren plateaus and exponential loss concentration. We explore the
interplay between explicit and implicit models and losses, and show that using implicit generative
models (such as quantum circuit-based models) with explicit losses (such as the KL divergence) leads
to a new flavour of barren plateau. In contrast, the Maximum Mean Discrepancy (MMD), which
is a popular example of an implicit loss, can be viewed as the expectation value of an observable
that is either low-bodied and trainable, or global and untrainable depending on the choice of kernel.
However, in parallel, we highlight that the low-bodied losses required for trainability cannot in
general distinguish high-order correlations, leading to a fundamental tension between exponential
concentration and the emergence of spurious minima. We further propose a new local quantum
fidelity-type loss which, by leveraging quantum circuits to estimate the quality of the encoded
distribution, is both faithful and enjoys trainability guarantees. Finally, we compare the performance
of different loss functions for modelling real-world data from the High-Energy-Physics domain and
confirm the trends predicted by our theoretical results.

I. INTRODUCTION

The advent of quantum computing has opened up new
avenues for solving classically intractable problems [1–4].
Naturally, researchers gravitate towards finding the first
high-value applications that could be tackled with near-
and mid-term quantum devices [5]. This includes not only
speed-ups [3, 6–8], but potentially superior memory effi-
ciency [9] or concrete qualitative improvements [10, 11].
Quantum machine learning (QML) is one of the domains
that attracts this attention [2]. Quantum systems, in be-
ing inherently probabilistic, are particularly well suited to
generative modelling tasks [12]. Generative models aim to
learn the underlying distribution of a dataset and thereby
provide a means of generating new data samples that are
similar to the original data. As well as providing a natu-
rally efficient means of generating samples, quantum gener-
ative models can provably encode probability distributions
that are out of reach for classical models [13–15], and have
been proposed for various applications, such as handwrit-
ten digits [16], finance [17] or High-Energy-Physics [18].

∗ The first three authors contributed equally to this work.

Despite the excitement surrounding the potential of
generative QML, there remain substantial questions con-
cerning its scalability. This is non-trivial to assess since
implementations are constrained by hardware limitations
to small-scale proof-of-principle problems [16, 17, 19–21].
Thus analytic results are essential to guide the success-
ful development of this field. Of particular concern is
the growing body of literature on cost function concen-
tration and barren plateaus [22–29], where loss function
values can exponentially concentrate around a fixed value
and loss gradients vanish exponentially with growing prob-
lem size. This phenomenon, which exponentially increases
the resources required for training, originates from different
sources [22, 24, 30–38], and has been studied in a number
of architectures [22, 24, 29, 39–44] as well as classes of cost
function [31, 36, 39]. However, its impact on quantum gen-
erative modelling has thus far been largely overlooked.

In this work, we provide a thorough study of trainabil-
ity barriers and opportunities in quantum generative mod-
elling. Critical to our analysis is the distinction between
explicit and implicit models and losses. Explicit models
provide efficient access directly to the model probabilities,
whereas implicit models only provide samples drawn from
their distribution [45]. Quantum circuit Born machines
(QCBMs) [46], the focus of this work, encode a probabil-
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Circuit
depth

Explicit loss (pairwise) Implicit
loss

(MMD)
Conventional
strategy

Quantum
strategy

Product

No
(Corollary 2)

Yes
(Local Quantum
Fidelity [31])

Yes
(σ ∈ Θ(n),
Theorem 2)

Shallow Yes
(σ ∈ Θ(n),
Conjec-
ture 1)

Deep No [22, 30] No [22, 30]

Table I. Summary of our main results. This table summa-
rizes our key analytical results on the trainability of different
loss functions in quantum generative modelling tasks. Without
a strong inductive bias, pairwise explicit losses are untrainable
for all circuit depths with the conventional sampling strategy.
A quantum strategy could be utilised to efficiently estimate the
local quantum fidelity, Eq. (48), which is trainable for a shallow-
depth circuit. The MMD using a classical Gaussian kernel with
a linearly-scaled bandwidth (σ ∈ Θ(n)) is expected to be train-
able for a shallow-depth circuits. Note that ‘Yes’ here indicates
the existence of regimes with trainability guarantees- it does not
preclude untrainable regimes including, for example, the use of
global quantum fidelity or the MMD with a fixed bandwidth.

ity distribution in an n-qubit pure state and thus are a
paradigmatic example of an implicit model. Mirroring the
capabilities of the models, explicit losses are those that
are formulated explicitly in terms of the model and tar-
get probabilities, whereas implicit losses compare samples
from the model and the training distribution. The most
commonly used explicit loss for quantum generative mod-
els is the Kullbach-Leibler (KL) divergence [47]. Other ex-
amples include the Jensen-Shannon divergence (JSD), the
total variation distance (TVD) and the classical fidelity.
The MaximumMean Discrepancy (MMD) [48] on the other
hand is one of the leading examples of an implicit loss.

Here we argue that the tension between using an im-
plicit generative model (providing only samples) with an
explicit loss (requiring access to probabilities) leads to a
new flavour of barren plateau. This result disqualifies all
before-mentioned explicit losses, and crucially the KL di-
vergence, for efficient training of QCBMs without a strong
inductive bias towards the target distribution. In contrast,
the MMD as an implicit loss exhibits more nuanced be-
haviour and can be either trainable or untrainable. By
viewing the classical MMD loss as the expectation value of
a quantum observable, we show that varying the bandwidth
parameter of a Gaussian kernel interpolates the MMD loss
between a loss composed of predominantly global terms

and one composed of low-bodied terms with either expo-
nentially or polynomially decaying loss variances in the
number of qubits. These results are summarised in Ta-
ble I.

In parallel, we provide insights into how the globality of a
generative loss affects the types of correlations in a dataset
that can reliably be learned. In particular, we show that a
k-bodied loss (see Fig. 4) cannot distinguish between dis-
tributions that agree on all k-marginals but disagree about
higher-order correlations. Hence we argue that in the con-
text of quantum generative modelling it is advantageous
to train on full-bodied losses, that is losses containing both
low and high-bodied terms, rather than the purely local
losses advocated elsewhere in quantum machine learning.
The MMD is then a promising candidate choice for the
training of QCBMs as its bodyness can be controlled via
the bandwidth parameter.

We additionally expand the pool of viable loss functions
by proposing a new local quantum fidelity-type loss which
leverages what we call a quantum strategy for evaluat-
ing losses. This is to be contrasted with the conventional
measurement strategy which simply uses samples from the
model distribution in the computational basis. We pro-
vide an efficient training protocol using the local quantum
fidelity loss with provable trainability guarantees.

Finally, we support our analysis with a comparison of
the performance of the KL divergence, MMD and local
quantum fidelity losses for modelling High-Energy-Physics
(HEP) data. Specifically, we consider electron energy de-
positions in the electromagnetic calorimeter (ECAL) part
of detectors involved in a typical proton-proton collision
experiment at the LHC. We learn to generate hits in the
detector as black and white images of various sizes, with
up to 16 qubits. We confirm that the properly-tuned MMD
and the local quantum fidelity losses remain trainable us-
ing a restrictive shot budget, while training with the KL
divergence becomes increasingly futile.

II. FRAMEWORK

The goal of generative modelling is to use samples from
a target distribution p(x) to learn a model of p(x) which
can be used to generate new samples. More concretely,
as sketched in Fig. 1, a generative model takes as input a
training dataset P̃ consisting of M = |P̃ | samples drawn
from the target distribution p(x). This training set can
be used to construct the empirical probability distribution
p̃(x) for all samples x ∈ P̃ . The training dataset, or the
training distribution, is then used to train the variational
parameters θ of a parameterized probability distribution
qθ(x). If successful, the output of the algorithm is a set



3

Figure 1. The generative modelling framework using quantum circuit Born machines. Given a training dataset P̃ with
distribution p̃(x) over discrete data samples x, the goal of a QCBM is to learn a distribution qθ(x) which models the real-world
distribution p(x) from which the training data itself was sampled. This is done by tuning the parameters θ of a parametrized
quantum circuit such that the QCBM minimizes a loss function that estimates the distance between the model and the training
distribution. The QCBM is an implicit model and can thus in general not be paired with an explicit loss function, but it may be
trainable using an implicit loss. In contrast to the conventional loss estimation strategy (solid lines) of generating a set of samples
Q̃θ and forming an empirical distribution q̃θ(x), strategies that are ‘more quantum’ (dashed lines) can be employed with the aim
of allowing QCBMs to be trained with loss functions which conventionally appear explicit.

of optimized parameters θopt such that the trained model
qθopt(x) well-approximates the unknown target distribu-
tion p(x). The trained model qθopt(x) can then be used
to generate new and previously unseen data. For compact-
ness, we use the notation p and qθ to denote the target and
model distributions respectively.

The process of training requires a loss function L(θ)
which estimates the distance between the model distribu-
tion qθ(x) and the training distribution p̃(x). For typical
choices in loss function (detailed further in Section II B),
the loss is minimised when the model parameters θ are
tuned such that the model distribution perfectly matches
the empirical distribution obtained from the training data.
That is, L(θ) = 0 if and only if qθ(x) = p̃(x) over the
entire data space X . Thus, by perfectly minimizing the
loss, one perfectly learns the empirical distribution p̃(x)
but not the true target distribution p(x). This scenario
is commonly called overfitting1. To allow for generaliza-

1 In contrast, discriminative machine learning models can be per-
fectly minimized on the training data and not be overfitted.

tion [49], whereby the model can generate novel data with
similar properties to the training data, one seeks to sig-
nificantly reduce (but not perfectly minimize) the training
loss. While generalization is the end-all goal of generative
models, it is not the focus of this work. Instead, we focus
on the training component of the generative framework, as
failing to train also prohibits generalization.

A. Quantum circuit models

One prototypical quantum generative model is the quan-
tum circuit Born machine (QCBM) [13, 46, 50, 51]. Owing
its name to the Born rule of quantum mechanics, a QCBM
encodes a probability distribution over discrete data (here
bitstrings) in an n-qubit pure quantum state that depends
on a parameterized unitary U(θ),

qθ(x) = |〈x|U(θ)|0〉|2 . (1)

Here |x〉 is a computational basis state corresponding to a
bitstring x and, without loss of generality, an initial state
can be chosen as |0〉 = |0〉⊗n. We note that estimating
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qθ(x) is equivalent to finding the expectation value of a
global projector |x〉〈x|. More fundamentally, QCBMs en-
able the encoded distribution to be efficiently sampled sim-
ply by measuring in a chosen computational basis. That is,
every measurement of the quantum state provides an un-
biased sample from the encoded distribution (in an ideal
noise-free setting). This is a very desirable property in
generative models that many (classical) generative mod-
els do not share with the QCBM. Sampling techniques for
classical generative models are often unreliable and may
break down for certain distributions, as is the case for re-
stricted Boltzmann machines (RBMs) [52, 53]. Born ma-
chines represent an effort to create a powerful, flexible and
efficient generative model for classical discrete data, and as
well as numerous ‘standard’ digital quantum implemena-
tions [16, 17, 19–21], they have been widely implemented
using tensor networks [54–57], continuous variable hard-
ware [58], in a conditional setting [59, 60], with non-linear-
ities [61].

An important, but rather subtle, distinction in genera-
tive modelling is that between explicit and implicit gener-
ative models [45, 62]. Explicit generative models are ones
that allow efficient access to the model probability qθ(x) for
any data sample x. Here, “efficient” means that the prob-
abilities can be computed in a time and memory that are
polynomial in the size of the data samples, i.e., O(poly(n))
resources. Explicit (classical) generative models include
for example auto-regressive models [63], RNNs [64], ten-
sor networks without loops (which includes tensor network
Born machines) [54, 55], and many forms of density es-
timators. In contrast, implicit models lack this property
and instead offer efficient access to samples from qθ(x),
which some forms of explicit models may struggle with. A
popular example of an implicit generative model are Gen-
erative Adversarial Networks (GANs) [65] that leverage an
implicit training scheme to learn powerful generators.

In the case of QCBMs implemented on quantum devices,
it becomes evident that we do not have (efficient) explicit
access to qθ(x), but only to samples of the distribution
in the computational basis. Consequently, QCBMs can be
classified as implicit generative models. In this work, we
study the trainability issues that QCBMs suffer from as a
result.

B. Loss functions

Similarly to the distinction between explicit and implicit
generative models, we draw a distinction between explicit
and implicit loss functions. In broad terms, explicit losses
are those that can only be formulated explicitly in terms of

the target and model probabilities, whereas implicit losses
are those that can be formulated in terms of an average
over model and training data samples. This distinction at
the level of loss functions thus mirrors the capabilities and
limitations of explicit and implicit generative models.

More concretely, we define an explicit loss as a loss func-
tion L that can be written solely as a function of the prob-
abilities of the target and model distributions, without any
dependence on the data itself. Explicit losses thus take the
general form

Lexpl(θ) :=
∑
x1...xr

f
(
p(x1), ..., p(xr), qθ(x1), ..., qθ(xr)

)
,

(2)
where f(·) is a function that depends on the target proba-
bilities p(xi) and model probabilities qθ(xi) for data vari-
ables xi ∈ X with i = 1, ... , r. For this loss to be useful,
the function f should be chosen such that it measures the
distance between the probability distributions p and qθ.
Crucially, the function f does not take the data values x
themselves as arguments.

While in full generality explicit losses could compare
multiple copies of the target and model probabilities (i.e.,
we can have r > 1), in practice, they usually take the sim-
pler form

L(θ) =
∑
x∈X

f(p(x), qθ(x)) . (3)

We call such losses pairwise explicit losses since they com-
pare the model and target probabilities on the same data
samples, or in our case, bitstrings. The pairwise explicit
loss covers all so-called f -divergences [66], including the
commonly encountered KL divergence (KLD) [67],

LKLD(θ) =
∑
x∈X

p(x) log

(
p(x)

qθ(x)

)
, (4)

the reverse-KLD,

Lrev−KLD(θ) =
∑
x∈X

qθ(x) log

(
qθ(x)

p(x)

)
, (5)

the Jensen-Shannon divergence (JSD) [68],

LJSD(θ) =
∑
x∈X

[
p(x) log

(
p(x)

p(x) + qθ(x)

)
+

qθ(x) log

(
qθ(x)

p(x) + qθ(x)

)]
, (6)

and the total variation distance (TVD),

LTVD(θ) =
∑
x∈X
|p(x)− qθ(x)| . (7)
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Another example of loss function that can be written in
this form is the classical fidelity,

LCF(θ) = 1−
∑
x∈X

√
p(x)qθ(x) . (8)

Notably, any non-data dependent post-processing of an
explicit loss retains its explicit character. Thus, any non-
data dependent function of an explicit loss (Eq. (2)) may
also be considered an explicit loss. For example, the Rényi
divergence [69]

LR,α(θ) =
1

α− 1
log

(∑
x

pα(x)

qα−1
θ (x)

)
, (9)

with 0 < α <∞ and α 6= 1 can be classified as an explicit
loss function.

On the other hand, we define an implicit loss as one that
can be written as an average over samples drawn from the
target and model distributions. That is, an implicit loss
function can be expressed as

Limpl(θ) := Ex1,...,xr∼{p,qθ} g(x1, ...,xr) , (10)

where g(x1, ...,xr) is some function that depends on the
data (but not probabilities), and the expectation is taken
over data variables x1, ...,xr sampled either from the data
distribution p or the model distribution qθ.

As a key example of an implicit loss, we focus on the
commonly used Maximum Mean Discrepancy (MMD) [48]
loss. The MMD takes the form

LMMD(θ) = Ex,y∼qθ [K(x,y)]− 2Ex∼qθ,y∼p[K(x,y)]

+ Ex,y∼p[K(x,y)] , (11)

where K(x,y) is a freely chosen kernel function. We con-
sider the popular choice of a classical Gaussian kernel,
which is defined as

Kσ(x,y) = e−
‖x−y‖22

2σ =

n∏
i=1

e−
(xi−yi)

2

2σ . (12)

Here, ‖.‖2 is the 2-norm, σ > 0 is the so-called bandwidth
parameter, and xi, yi are the values of bit i in bitstring
x,y, respectively. This kernel in effect provides a contin-
uous measure of the distance between target and model
bitstrings.

Interestingly, an implicit loss can always additionally be
expressed in a form where it contains the target and model

probabilities. Taking the MMD loss in Eq. (11) as a con-
crete example, the loss can be re-written as

LMMD(θ) =
∑
x,y∈X

qθ(x)qθ(y)K(x,y)

− 2
∑
x,y∈X

qθ(x)p(y)K(x,y)

+
∑
x,y∈X

p(x)p(y)K(x,y) . (13)

However, we stress that due to the data-dependence in the
kernel K(x,y), the MMD loss function can in general not
be classified as an explicit loss.

Nonetheless, this brings us to the subtle point that ex-
plicitness and implicitness are in fact not strictly mutually
exclusive, i.e., one may be able to find a loss function that
satisfies both Eq. (2) and Eq. (10) in specific cases. For
example, for the MMD this occurs if the kernel is chosen
to be a Kronecker delta function, K(x,y) = δxy. However,
such hybrid losses are very much rare edge cases, and the
overwhelming majority of losses are either explicit or im-
plicit. A more detailed discussion of the technical nuances
of the explicit and implicit loss distinction is provided in
Appendix A.

C. Loss measurement strategies

Central to the trainability of quantum generative models
is the measurement strategy used to estimate the loss. Here
we draw a distinction between conventional and quantum
measurement strategies. For simplicity we now restrict our
discussion to implicit quantum generative models such as
the QCBM.

The conventional measurement strategy, which can be
employed by both classical and quantum implicit models,
starts by collecting sample data from the target and model
distributions in the bases in which the data distribution
is modelled, e.g., the computational basis for the case of
classical data. For an implicit loss these samples can then
be directly used to evaluate the loss function in Eq. (10).
For an explicit loss, this is not possible, and instead one
needs to use the collected samples to recreate an empirical
estimate q̃θ of the true model distributions qθ.

More formally, as sketched in Fig. 1, consider the set
of bitstrings Q̃θ obtained after collecting N samples from
the model and the empirical model distribution q̃θ(x) con-
structed from these samples. Then, the statistical estimate
of the pairwise explicit loss function L̃(θ) in Eq. (3) can be
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expressed as

L̃(θ) =
∑
x∈X

f(p̃(x), q̃θ(x)) . (14)

Crucially, since this proxy is all we have access to, the
properties of this statistical estimate are what determine
the trainability of an explicit loss function when evaluated
via the conventional strategy. We note that zero-estimates
of the model probabilities with q̃θ(x) = 0 are often ‘clipped’
with a small regularization parameter ε � 1 in order to
avoid numerical instabilities in the loss computation.

This conventional strategy is somewhat classical in the
sense that after sampling is performed on the quantum
model, the post processing required to compute the cost
is entirely classical. However, ‘more quantum’ measure-
ment strategies are also possible. In this case, a quantum
circuit is used to compute functions of the probabilities,
potentially more directly and/or collectively.

For example, rather than computing the classical fidelity
in Eq. (8) by explicitly computing the probabilities qθ(x),
one could encode the target distribution in a quantum state
|φ〉 =

∑
x

√
p̃(x) |x〉 and compute the quantum fidelity

LQF (θ) := 1− | 〈φ|ψ(θ)〉|2 (15)

∼ 1−
∣∣∣∣∣∑
x

√
p̃(x)qθ(x)

∣∣∣∣∣
2

. (16)

Up to arbitrary global phase factors (and a mod-square)
this is equivalent to the classical fidelity. However, it can
be computed via coherent strategies - namely a Loschmidt
echo circuit [70–73] or a SWAP test [74, 75]. We note
that in this case quantum generative modelling is equiv-
alent to a state learning problem. While this expression
seemingly requires the entire training dataset to be loaded
into a wavefunction, we present an approach in Sec. III C
to estimate this cost using pairwise Hadamard tests.

More generally, it remains an open question if/when
commonly encountered losses for generative modelling can
be computed using quantum strategies and whether or not
this brings any advantages2. Nonetheless, we suggest that
this is an interesting avenue for future research.

2 Beyond QCBMs, Quantum Generative Adversarial Networks
(QGANs) [76] trained with classical discriminators [77–79] in ef-
fect use a conventional measurement strategy, whereas their variant
with quantum discriminators [80] use a quantum strategy.

D. Exponential concentration and barren plateaus

For a quantum generative model to be trained success-
fully, the loss landscape must be sufficiently featured to
enable a solution to be found. There is a growing aware-
ness of the importance of barren plateaus, and its sister
phenomenon exponential concentration, for quantum ma-
chine learning [22–29]. A barren plateau (BP) is a loss
landscape where the magnitudes of gradients vanish ex-
ponentially with growing problem size [22, 24–28, 30–36].
Closely related and equally problematic is exponential con-
centration where the loss is shown to concentrate with high
probability to a single fixed value [23]. This, with high
probability, results in poorly trained models using a poly-
nomial number of measurement shots (regardless of the
optimization method employed) [26]. More precisely, ex-
ponential concentration can be formally defined as follows.

Definition 1 (Exponential concentration). Consider a
quantity X(α) that depends on a set of variables α and
can be measured from a quantum computer as the expecta-
tion of some observable. X(α) is said to be deterministi-
cally exponentially concentrated in the number of qubits n
towards a certain fixed value µ if

|X(α)− µ| 6 β ∈ O(1/bn) , (17)

for some b > 1 and all α. Analogously, X(α) is probabilis-
tically exponentially concentrated if

Prα[|X(α)− µ| > δ] 6
β

δ2
, β ∈ O(1/bn) , (18)

for b > 1. That is, the probability that X(α) deviates from
µ by a small amount δ is exponentially small for all α.

A number of causes of exponential concentration and
barren plateaus have been identified including using pa-
rameterized circuits that are too expressive [22, 24, 30, 42]
or too entangling [32, 33, 43]. Hardware noise [34, 35, 81]
has also been shown to exponentially flatten the loss land-
scapes, which strongly hinders the potential of current
noisy quantum devices. The exponential concentration can
also happen due to randomness in the training dataset [36–
38]. In addition, there are studies on the exponential con-
centration in different QML models including dissipative
parametrized quantum circuits [43] as well as quantum
kernel-based models [29].

Finally, the choice of loss function can also induce these
phenomena. Thus far, loss concentration has predomi-
nantly been studied in the context of losses of the form

C(θ) = Tr
[
OU(θ)ρU(θ)†

]
, (19)
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where ρ is an n-qubit input state and O is a Hermitian op-
erator. In particular, it has been shown that ‘global’ [31]
losses, i.e., those where O acts non-trivially on O(n) qubits,
induce loss concentration even for very shallow random cir-
cuits. Conversely, local losses where O acts non-trivially
on at most log(n) adjacent qubits (and more generally
low-body losses where the adjacency constraint is lifted
- see panel a) of Fig. 4) have been shown to enjoy train-
ability guarantees [31, 39] with shallow unstructured cir-
cuits. Furthermore, we note that how barren plateaus af-
fect parametrized quantum circuits with a non-linear loss
in the discriminative QML setting has been studied in
Ref. [36].

Here we study exponential concentration for generative
modelling tasks on classical discrete data using implicit
quantum generative models, and use our insights to es-
tablish guidelines of how best to train such models. Cru-
cially, in this generative modeling context, the fixed points
of the model probabilities tend to be exponentially small
and the loss function contains the sum over exponentially
many terms. These two together render previously used
tools not directly applicable for studying the trainability
of quantum generative models.

III. TRAINABILITY ANALYSIS ON LOSS
FUNCTIONS

In this section, we analyse the trainability of different
loss functions used in quantum generative modelling.

A. Pairwise explicit losses

Part of the power of quantum generative models is that
they can be used to continuously parameterise and express
distributions over discrete data with exponential support.
That is, an n-qubit model can be used to model distri-
butions over 2n different n-bitstrings. However, while the
true target distribution may have exponential support, the
amount of training data P̃ is in practise restricted. More
precisely, for large n (e.g., n > 50), it is reasonable to as-
sume that the number of bitstrings in the training dataset
scales at most polynomially in n. Similarly, the number of
bitstrings samples obtained from the model must also scale
at most polynomially in n. That is, |P̃ |, |Q̃θ| ∈ O(poly(n)).

This discrepancy between the polynomial support of the
training data and the exponential support of the model,
can make it highly challenging to train implicit models us-
ing pairwise explicit loss functions. In loose terms, the
problem is that the only bitstrings that contribute to the
evaluation of a statistical estimate of an explicit cost are

Figure 2. The problem with pairwise explicit losses. In
the space with 2n unique n-bit bitstrings, samples x generated
from an uninformed model with high probability do not coincide
with any of the training bitstrings. In other words, the empirical
model distribution q̃θ(x) and the training distribution p̃(x) do
not both have non-zero probabilities for any bitstring x. On the
other hand, an implicit loss function such as the MMD provides
a continuous measure of distance between the distributions by
use of a Gaussian kernel with bandwidth σ.

those corresponding to bitstrings P̃ in the training data.
To estimate the loss one thus needs good estimates of the
model distributions over the support of P̃ . However, for an
implicit model these estimates are obtained via sampling
and the set P̃ contains an exponentially small proportion of
the total number of bitstrings. As such, for generic models
(we will explain what we mean by generic below), the prob-
ability of measuring any bitstring in the training set will
also be exponentially small (as sketched in Fig. 2), leading
to a poor statistical estimate of the loss.

1. Concentration of Pairwise Explicit Losses

To make this line of argument more concrete, the first
family of models we will consider are those where the indi-
vidual model probabilities qθ(x) are exponentially concen-
trated over different values of θ. This is the case for a large
family of unstructured parameterised quantum circuits.
Since estimating qθ(x) is equivalent to computing the ex-
pectation value of the global projector |x〉〈x|, the concen-
tration of qθ(x) can be viewed as resulting from the global-
measurement induced barren plateau phenomenon [31]. In
this case, concentration is observed even for an ansatz that
is comprised of only a single layer of single-qubit rotations.
However, alternative phenomena (e.g. noise [34] or express-
ibility [30]) can also lead to the exponential concentration
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of qθ(x). More formally, the following proposition holds.

Proposition 1 (Concentration of model). For all possible
bitstrings x ∈ X , the underlying probability qθ(x) of the
quantum model exponentially concentrates towards some
exponentially small fixed point µ ∈ O(1/bn) for b > 1 if
the quantum generative model is constructed with:

• A single layer of random single qubit gates U(θ) =⊗n
i=1 Ui(θi). Or, more precisely, if {Ui(θi)}θi forms

a local 2-design on qubit i [31].

• L layers of random k-local 2-designs, i.e., U(θ) =∏L
l=1

⊗n/k
j=1 Ul,j(θl,j) with each Ul,j(θl,j) acting on k

qubits and {Ul,j(θl,j)}θl,j forming a k-local 2-design
over θl,j [31].

• A parameterised quantum circuit U(θ) such that its
ensemble over θ i.e., {U(θ)}θ forms an approximate
2-design on n qubits [22, 30]. This holds even for the
problem-inspired circuits [24].

• A linear-depth quantum circuit subject to local Pauli
noise between each layer [34].

Proposition 1 provides examples of cases where the
model probabilities exponentially concentrate over all bit-
strings in X . However, we find that in fact trainability
difficulties arise even if model probabilities are only expo-
nentially concentrated over the training dataset (but per-
haps not on points outside the dataset). That is, all that is
required for untrainability is that the probability of mea-
suring a sample that is also in the dataset is practically
zero. This is likely to be the case even for highly structured
quantum circuits if the generative model is built without
a strong inductive bias. We formalise this intuition in Ap-
pendix B 2.

We now argue that the exponential concentration of
probabilities qθ(x) over the dataset causes L̃(θ) to also
exponentially concentrate. To understand why, let us look
at the probability of measuring one specific bitstring (e.g.,
x0 - the all-zero bitstring) and assume that qθ(x0) is expo-
nentially concentrated towards some exponentially small
value µ. Then, for any given parameter constellation,
it is highly likely that qθ(x0) is exponentially close to
µ. To estimate qθ(x0) on a quantum computer we sam-
ple N bitstrings from the quantum model and record the
observations. The chance that none of the sampled bit-
strings are the specific bitstring that we are interested in is
(1− qθ(x0))N ≈ 1−Nµ. However, the number of circuits
N that can be efficiently run is necessarily limited - here
we will assume N ∈ poly(n). Thus we have that the proba-
bility of not measuring the bitstring we are interested in is
exponentially close to 1. That is, the statistical estimate of

q̃θ(x0) is almost always zero. We can then generalize this
intuition for a single bitstring to the estimation of each
of the (polynomially many) target bitstrings and therefore
the whole loss function. The following theorem formalizes
this argument.

Theorem 1 (Concentration of pairwise explicit loss for
concentrated models). Consider the loss function of the
form in Eq. (3). Assume that for all bitstrings in the
training dataset, x ∈ P̃ , the quantum generative model
qθ(x) exponentially concentrates towards some exponen-
tially small value (as defined in Definition 1). Suppose that
N ∈ O(poly(n)) samples are collected from the quantum
model corresponding to the set of sampled bitstrings Q̃θ,
and that the training dataset P̃ contains M ∈ O(poly(n))
samples. We define the fixed point of the loss as

L0(P̃ , Q̃θ) =
∑
x∈P

f(p̃(x), 0) +
∑
x∈Qθ

f(0, q̃θ(x)) , (20)

with P (and Qθ) being a set of unique bitstrings in P̃ (and
Q̃θ). Then, the probability that the estimated value L̃(θ) is
equal to L0(P̃ , Q̃θ) is exponentially close to 1, i.e.,

PrQ̃θ,θ[L̃(θ) = L0(P̃ , Q̃θ)] > 1− δ , (21)

with δ ∈ O
(

poly(n)
cn

)
for some c > 1.

As a direct consequence of Theorem 1, the following
corollary gives the concentration points of some specific
explicit loss functions mentioned in this work.

Corollary 1 (Concentration points of common explicit
loss functions). Under the same conditions as in Theo-
rem 1, the following loss functions concentrate at

• KL-divergence:

LKLD
0 (P̃ , Q̃θ) =

∑
x∈P

p̃(x) log

(
p̃(x)

ε

)
. (22)

Here ε � 1 is a clipping value, which is common
practice to avoid the singularity of the logarithm at
qθ(x) = 0.

• Classical fidelity:

LCF
0 (P̃ , Q̃θ) = 1 . (23)

• Reverse KL-divergence:

Lrev−KLD
0 (P̃ , Q̃θ) =

∑
x∈Qθ

q̃θ(x) log

(
q̃θ(x)

ε

)
. (24)
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• Total variation distance:

LTVD
0 (P̃ , Q̃θ) = 2 . (25)

Looking at the expressions for the fixed points given
above, in the case of the KL divergence, classical fidelity
and total variational distance, the fixed point is indepen-
dent of θ. Thus it is clear that the costs cannot be used
to train the quantum circuit model. In the case of the re-
verse KL divergence, the fixed point depends on θ but is
independent of the training data and thus the reverse KL
also cannot be used to train the model to learn the target
distribution.

More generally, for all explicit losses of the form Eq. (3),
the concentration point L0(P̃ , Q̃θ), Eq. (20), can be sepa-
rated into two terms: (i) the term that involves only P̃ and
(ii) the other that involves only Q̃θ. In other words, the θ
dependence of the estimator of the loss is independent of
the target distribution and thus the estimate of the loss is
worthless for training the generative model. This no-go re-
sult is rigorously established in Corollary 2. Our approach
is to show that the loss function at two arbitrary param-
eter values θ1 and θ2, contains no information about the
training distribution.

Corollary 2 (Untrainability of pairwise explicit loss func-
tions). Under the same conditions as in Theorem 1, the
probability that the difference between the two statistical es-
timates of the loss function at θ1 and θ2 does not contain
any information about the training distribution is exponen-
tially close to 1. Particularly, we have

PrQ̃θ,θ[L̃(θ1)− L̃(θ2) = ∆L0(Q̃θ1 , Q̃θ2)] > 1− 2δ , (26)

with δ ∈ O
(

poly(n)
cn

)
for some c > 1, Q̃θ1

(and Q̃θ2
) is a

set of sampling bitstrings obtained from the quantum gen-
erative model at the parameter value θ1 (and θ2), as well
as

∆L0(Q̃θ1
, Q̃θ2

) =
∑
x∈Qθ1

f(0, q̃θ1
(x))−

∑
x∈Qθ2

f(0, q̃θ2
(x)) ,

(27)

with Qθ1
(and Qθ2

) being a set of unique bit-strings in Q̃θ1

(and Q̃θ2). Crucially, ∆L0(Q̃θ1 , Q̃θ2) does not depend on
any p̃(x) ∈ P̃ .

To support our analytic claims we further conducted a
numerical study of the exponential concentration of pair-
wise explicit costs. For concreteness, we here decided to
focus on the KL divergence. In Fig. 3, we plot the mean
and variance (over θ) of the KL divergence for the tar-
get distribution p̃(0) = 1 as a function of the number of

Figure 3. Variance of the KL divergence with finite
shots. Concentration of the KL divergence loss as a function
of the number of measurements and qubits for random prod-
uct state circuits. Here we take the target distribution to be
p̃(0) = 1 and take the cutoff of the KLD to be ε = 10−14. Verti-
cal lines indicate where the number of measurements equal 2n.
Thus, we see that the the KLD estimate is biased upwards with
any finite number of measurements, and the number of mea-
surements required to achieve a reasonable level of uncertainty
increases exponentially with the number of qubits n.

measurement shots and qubits. For simplicity we take our
model to be a (Haar) random product state.

We see in Fig. 3a) that with a polynomial number of
measurements, as per Eq. (22), the empirical estimate of
the loss concentrates at log(1/ε) ≈ 32.2 for ε = 10−14. Cor-
respondingly, with a polynomial number of measurements
the variance in Fig. 3b) is exponentially close to zero. Us-
ing an exponential number of measurements, the estimate
of the KL tends towards its true value and the variance is
again small. The transition between these two regimes is
marked by a very high variance corresponding to the case
where the measurement count is high enough for there to
be some overlap between the sampled bits strings and the
0 bitstring, but not enough overlap to obtain a reliable
estimate of qθ(0). This results in the loss estimate to spo-
radically fluctuate between log(1/ε) and log(1/qθ(x)) with
qθ(x) > 0. While in Fig. 3 the target dataset consists of a
single bitstring, larger datasets only shift the curves to the
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left by a polynomial amount.
Broader Implications. While our results above are for-

mulated for training QCBMs with pairwise explicit costs,
we argue that the underlying problem is more general and
immune to simple solutions. One approach, for example,
might be to take non-data-dependent functions of pairwise
explicit losses, as in the case of the Rényi-divergence in
Eq. (9). However, such loss functions exponentially concen-
trate in the same manner as the explicit losses themselves
when employing the conventional measurement strategy. A
more promising but challenging approach would be to at-
tempt to measure such losses via quantum strategies. We
discuss this further in Section III C.

More generally, while we provide strict no-go results
only for pairwise explicit losses, we believe that any ex-
plicit losses in the general form of Eq. (2) will suffer from
concentration or exponential imprecision due to the inher-
ent inability of implicit models to accurately estimate the
model probabilities in polynomial time3. We are however
not aware of any practical explicit loss function that cannot
be brought into the pairwise explicit form.

We further stress that our results hold for unstructured
ansätze or ansätze that lack an appropriate inductive ini-
tial bias. Thus, while explicit losses such as the KLD will
not work at scale with implicit models straight out-of-the-
box, our no-go theorems could be side-stepped using clever
initialization strategies in conjunction with specialized an-
sätze. For example, while we argue in Appendix B 2 that
initializing the quantum circuit model on a subset of train-
ing states will not alleviate the fundamental issue when
using a generic ansatz, this may work if one leverages a
quantum circuit that constrains the model to the symme-
try sector of the data. Among other hard constraints, this
is conceivable if the data consists only of samples with a
certain hamming weight or cardinality, as it can be the case
in certain financial applications [82, 83]. However, many
real world datasets may not contain strong symmetries that
one can leverage so straight-forwardly. It is therefore criti-
cally important to study the effect of strong parameter ini-
tializations and inductive biases using explicit losses– both
theoretically and experimentally.

B. Implicit losses: Maximum Mean Discrepancy

In the previous section we saw that an explicit loss func-
tion, used in conjunction with an implicit generative model

3 A possible exception is if a particular implicit model instead allows
for efficient estimation of gradients of an explicit loss function, as
it is the case for RBMs training on the KL divergence loss function

and the conventional sampling strategy, exhibits exponen-
tial concentration and hence is untrainable. The root cause
was, at least in part, a miss-match between using an ex-
plicit loss function with an implicit model. Thus it is nat-
ural to ask whether an implicit quantum loss would fare
better.

Here we focus on analysing the MMD loss function (see
Eqs. (11) and (13)), which is a commonly-used implicit
loss. In contrast to the pairwise explicit losses discussed
previously, each bitstring drawn from the model is gener-
ally compared with all training bitstrings, with the ker-
nel function K(x,y) controlling the contribution of each
comparison. With a poor choice in kernel it is clear that
the MMD will be susceptible to exponential concentra-
tion. For example, the Gaussian kernel with the band-
width σ → 0 is equivalent to a delta function kernel,
K(x,y) = 〈x,y〉 = δxy. In this case the MMD reduces
to the pairwise explicit loss

∑
x∈X (p(x)− qθ(x))2 (see Ap-

pendix A for details), and consequently is subject to our
no-go result in Theorem 1. This thus prompts the question
of how exactly σ affects trainability.

Properties of the MMD loss. To study the properties
of the MMD loss, it is helpful to note that each term in
the MMD can be viewed as the expectation value of an ob-
servable whose properties depend on the choice of σ. This
change in perspective allows us to leverage existing knowl-
edge from the VQA trainability literature. In particular,
prior no-go results on VQAs with observable-type loss func-
tions are now directly applicable here, including those on
cost function induced [31], expressiblity-induced [22, 30],
and noise-induced [34] barren plateaus.

Specifically, each term in the MMD can be written as

M(ρ, ρ′) = Tr
[
O

(σ)
MMD(ρ⊗ ρ′)

]
, (28)

where we have defined the MMD observable

O
(σ)
MMD :=

∑
x,y

Kσ(x,y)|x〉〈x| ⊗ |y〉〈y| . (29)

This observable acts on 2n qubits, namely n qubits corre-
sponding to the QCBM, ρθ = |ψ(θ)〉 〈ψ(θ)|, and n qubits
corresponding to the dataset, ρp̃ =

∑
y p̃(y)|y〉〈y|. For the

first term in the MMD, both x and y are sampled from the
QCBM and we have ρ = ρ′ = ρθ. The cross-term instead
has ρ = ρθ and ρ′ = ρp̃, and the final term has ρ = ρ′ = ρp̃.

In the Pauli basis, the MMD observable O(σ)
MMD takes the

elegant form

O
(σ)
MMD =

n∑
l=0

wσ(l)D2l , (30)
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Figure 4. Bodyness of the MMD loss. a) We illustrate the difference between ‘low-body’, ‘local’, ‘global’ and ‘full-body’
operators. An operator O is low-bodied if it acts non-trivially on at most O(log(n)) qubits. If a low-bodied operator acts on
qubits that are adjacent to each other, then O is said to be local. On the other hand, O is global if it acts non-trivially on Θ(n)
qubits. Lastly, a full-body operator consists of the sum of several operators that are low-body/local and global. b) We depict
the weight wσ(l) for the terms in the MMD operator as a function of their bodyness k for n = 50, 100 and 200 qubits and the
bandwidths σ = 0, 1 and n/4. The average weight over these three σ values is also shown. For small σ, the MMD operator
is a sum of predominantly global operators, i.e., with σ ∈ O(1) the mean bodyness is Θ(n). In contrast, σ ∈ Θ(n) results in
predominantly low-bodied operators. c) Sketch of the expected landscapes for low-body, global and full-body losses respectively.
Because low-body and global operators are exclusively sensitive to low-body and global features, respectively, their loss landscapes
exhibit spurious minima, which don’t coincide with the minimum of the true target distribution. A full-body loss on the other
hand should have a single optimal solution solution where all its constituent operator’s minima align.

where D2l are normalized 2l-body diagonal operators (de-
fined explicitly in Appendix C 1), and

wσ(l) =

(
n

l

)
(1− pσ)n−lplσ (31)

are Bernoulli-distributed weights with effective probability

pσ = (1− e−1/2σ)/2 . (32)

Thus estimating the MMD loss function in Eq. (11) using
a batch of measurements Q̃ is equivalent to using the same
measurements to estimate a weighted expectation of the
observables D2l.

The properties of the MMD observable clearly depend on
the distribution of the terms of different bodyness through
the wσ(l) factor. Fig. 4 shows how wσ(l) are distributed
for different σ. Owing to the Bernoulli-distributed weights,
we can straight-forwardly provide the average bodyness of

O
(σ)
MMD, which is given by

El∼ωσ(l)[2l] = 2npσ , (33)

and the variance in the bodyness, which is

Varl∼ωσ(l)[2l] = 4npσ(1− pσ) . (34)

From these expressions it follows that the MMD loss is pre-
dominantly composed of global operators when σ ∈ O(1).
More concretely the following proposition holds.

Proposition 2 (MMD consists largely of global terms for
σ ∈ O(1)). For σ ∈ O(1), the average bodyness of the
MMD operator containing Pauli terms with weight wσ(l)
is

El∼wσ(l)[2l] ∈ Θ(n) . (35)

Similarly, the variance in the bodyness is given by

Varl∼wσ(l)[2l] ∈ Θ(n) . (36)
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This shows that with fixed-size bandwidths σ, as is com-
monly done (e.g., Ref. [51]), the MMD suffers from global
loss function-induced barren plateaus [31] and hence is
untrainable. This practice of using constant bandwidths
is carried over from classical ML literature [84–86], but
Proposition 2 shows that this is fundamentally incompat-
ible with quantum generative models using unstructured
circuits.

In contrast, we show that if the bandwidth scales lin-
early in the number of qubits, σ ∈ Θ(n), the MMD loss
function is approximately low-bodied. We recall that being
low-bodied is more general than being local, the latter cor-
responding to the case where an operator is low-bodied and
each term only acts non-trivially on adjacent qubits. The
following proposition formalizes this relation by quantify-
ing the error made when truncating the MMD observable
after a certain bodyness.

Proposition 3 (MMD consists largely of low-body terms
for σ ∈ Θ(n)). Let L̃(σ,k)

MMD(θ) be a truncated MMD loss with
a truncated operator Õ(σ,k)

MMD that contains up to the 2k-body
interactions in O(σ)

MMD,

Õ
(σ,k)
MMD :=

k∑
l=0

wσ(l)D2l , (37)

where wσ(l) are Bernoulli-distributed weights defined in
Eq. (31). For σ ∈ Θ(n), the difference between the exact
and local approximation of the loss is bounded as

|L(σ)
MMD(θ)− L̃(σ,k)

MMD(θ)| 6 ε(k) , (38)

with

ε(k) ∈ O
(
n(c/k)k

)
, (39)

for some positive constant c.

This implies that one can view the MMD loss with a
bandwidth σ ∈ Θ(n) as composed almost exclusively of
low-body contributions. We therefore expect, given the
results of Refs. [31, 39], that the the MMD is trainable for
σ ∈ Θ(n) for quantum generative models which employ
shallow quantum circuits. We note that there appears to
be no merit in increasing σ beyond Θ(n), as that simply
increases the relative weight of the constant l = 0 term in
Eq. (30). That is, the MMD operator tends towards the
trivial identity measurement for σ →∞.

To probe this further, and get a better understanding
of the effect of σ on the trainability of the MMD loss, we
start by considering the case of QCBM with a product
ansatz. This allows us to find a closed-form expression of

the MMD variance as a function of the circuit parameters
(Supplemental Proposition 2) from which we can study the
concentration of the MMD for different σ values. Our find-
ings are summarized by the following Theorem (proven in
Appendix C 2 c).

Theorem 2 (Product ansatz trainability of MMD, infor-
mal). Consider the MMD loss function L(σ)

MMD(θ) as de-
fined in Eq. (11), which uses the classical Gaussian kernel
as defined in Eq. (12) with the bandwidth σ > 0, and a
quantum circuit generative model that is comprised of a
tensor-product ansatz U =

⊗n
i Ui(θi) with {Ui(θi)}θi be-

ing single-qubit (Haar) random unitaries. Given a train-
ing dataset P̃ , the asymptotic scaling of the variance of the
MMD loss depends on the value of σ.

For σ ∈ O(1), we have

Varθ[L(σ)
MMD(θ)] ∈ O(1/bn) , (40)

with some b > 1.
On the other hand, for σ ∈ Θ(n), we have

Varθ[L(σ)
MMD(θ)] ∈ Ω(1/n) . (41)

We numerically verify Theorem 2 in Fig. 5. In panel a)
we show that the analytical predictions for different band-
widths coincide perfectly with the numerical estimates.
The exponentially vanishing loss variances observed for
σ ∈ O(1) are expected to render the loss untrainable.
This is demonstrated in panel b), where we further train a
QCBM with σ = n/4 (which approximately maximizes the
variance) and σ = 1. We find that a QCBM with σ = n/4
can be successfully trained even for n = 1000 qubits. In
contrast, the training starts to fail to learn the |0〉 target
state after n ≈ 50 and is fully untrainable at n = 100 when
σ = 1 is used.

It is interesting to note that the approximately optimal
bandwidth σ ∼ n

4 for the product state ansatz coincides
with the so-called median heuristic [48] from classical ML
literature. For random circuits, the median (hamming)
distance between bitstrings is in fact n

2 , which we satisfy
with the factor of 2 in our kernel convention.

To go towards more practical generative modelling, we
recall that Ref. [39] proves that cost functions of the form
of Eq. (19) using 2k-body observables with k ∈ O(log(n))
are trainable using 1D-random log(n) depth circuits. Since
Proposition 3 implies that the MMD is well approximated
by a log(n)-body cost, it should follow that the MMD is
also trainable at log(n) depths. There are a few technical
caveats associated with constructing a full proof. For ex-
ample, the first term of the MMD requires working with
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Figure 5. σ-dependence of the MMD loss function. a)
Comparison of the MMD variance between the analytical pre-
diction in Eq. (C84) and empirical variance using 100 measure-
ments from a product state ansatz. b) Training a product state
ansatz on the |0〉 target state for σ = 1 and σ = n/4 using the
CMA-ES [87] optimizer and 512 measurements. In both cases
the QCBM ansatz consists of a single layer of Ry rotations on
each qubit.

4-designs instead of 2-designs, and the second term depends
on the target distribution, leading to additional subtleties.
However, there is no strong reason to expect that these
technicalities make the MMD untrainable. Hence, we pro-
pose the following conjecture.

Conjecture 1. A QCBM composed of a shallow log(n)
depth unstructured circuit is trainable with the MMD loss
function as defined in Eq. (11) using the Gaussian kernel
in Eq. (12) as long as the bandwidth σ ∈ Θ(n). That is,
we have

Varθ[L(σ)
MMD(θ)] ∈ Ω(1/ poly(n)) . (42)

This conjecture is further supported by our numerical ev-
idence for the trainability of the MMD for deeper circuits
and more realistic datasets shown in Fig. 6. Here we plot
the loss variance as a function of circuit depth L and the
number of qubits n for σ = n/4 on four datasets from four
different target distributions. We observe that the poly-
nomial scaling of the loss variance does in fact extend be-
yond product states to shallow circuits, i.e., L ∈ O(log(n)).

However, for sufficiently deep circuits, i.e., L ∈ Ω(n),
the MMD variance appears to decay exponentially. This
aligns with expressibility-induced barren plateaus observed
in other VQA applications, which occur even for maximally
local loss functions, i.e., k = 1.

Large gradients are not enough. Our results so far ap-
pear to indicate that picking a single bandwidth σ ∈ Θ(n)
maximizes the trainability of the MMD loss function with a
Gaussian kernel. While it is true that this choice maximizes
the expected magnitude of initial gradients for a QCBM,
non-vanishing gradients are a necessary condition but not
sufficient to guarantee reliable training performance. And
in fact it turns out that while low-body losses exhibit large
gradients they come with other limitations. Particularly,
we show that the bodyness of a generative loss function
defines the maximal order of marginals of the target distri-
bution that can be distinguished. That is, the model only
learns to match the target distribution on subsets of bits,
i.e. on its marginals. This introduces a continuous family
of minima which are indistinguishable from the true mini-
mum when using a low-bodied loss function, but which are
systematically wrong for the purposes of generative mod-
elling. The worry is that the non-vanishing loss gradients
in low-bodied losses are predominantly due to the presence
of such spurious minima and do not point in the direction
of the true global minimum. This is sketched in Fig. 4.

Formally, let qθ(xA) denote the marginal model distri-
bution on a subset A ⊆ {1, 2, ..., n} of qubits, and p̃(xA)
the marginal target distribution on that same subset. For
more details we refer to Eq. (C139) and Eq. (C141) in Ap-
pendix C 3. The connection between the bodyness of the
loss operator and the marginals of the model and target
distributions is then formalized in the following Proposi-
tion.

Proposition 4 (The truncated MMD loss is not faithful).
Consider a distribution qθ(x) that agrees with the training
distribution p̃(x) on all the marginals up to k bits, but dis-
agrees on higher-order marginals. The distribution qθ(x)
minimizes the truncated MMD loss. That is, suppose

qθ(xA) = p̃(xA) , (43)

for all A ⊆ {1, 2, ..., n} with |A| 6 k, then

L̃(σ,k)
MMD(θ) = 0 . (44)

Crucially, this is true even if for some B ⊆ {1, 2, ..., n}
with |B| > k

qθ(xB) 6= p̃(xB) . (45)

In other words, if the MMD operator can be approxi-
mated well by a truncated operator with at most 2k-body
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Figure 6. Study of loss concentration with the MMD loss function. Numerical evidence that the MMD loss with Gaussian
bandwidth parameter σ = n/4 does not exhibit global or explicit loss function barren plateaus, but does exhibit loss concentration
with deep quantum circuits. We study the loss concentration in randomly initialized line-topology circuits for various datasets,
and increasing number of qubits n and circuit depth. The GHZ dataset consists of the all-0 and all-1 bitstrings (O(1) support),
the O(n) and O(n2) datasets consist of n and n2 random bitstrings, respectively, and the cardinality dataset contains all bitstrings
with n

2
cardinality (O(2n) support). There does not appear to be a strong data-dependence for the magnitude of the loss variance.

terms, model distributions that match the target distribu-
tion exactly up to k-body marginals or higher cannot be
distinguished from ones that match fully. As an exam-
ple of such distributions, consider the uniform distribution
over the bitstrings [001, 011, 101, 110], where the third bit
is the bit-wise addition of the previous two bits. Using only
second-order marginals, it is not possible to distinguish this
correlated distribution from the uniform distribution over
all eight possible outcomes.

Notably, long-range correlations in the data can still be
learned by the low-bodied MMD loss, just not ones that are
particularly high-order4. Not all distributions will however
exhibit such higher-order correlations and thus some distri-
butions will be learnable using losses composed of low-body
terms.

Proposition 4 thus establishes that to fulfil the promise
of quantum generative models, that is to be able to learn
both long-range and many-body correlations, one cannot
use exclusively low-body losses. However, such a require-
ment is in immediate tension with the low-bodyness re-
quired for the trainability guarantees (see Theorem 2). In
particular, in Proposition 3 we show that for σ ∈ Θ(n) the
contribution of k ∈ Θ(n) terms are exponentially small in

4 Note that this is in contrast to a loss composed purely of local
terms which would be restricted to learning local/short-range cor-
relations.

n. Thus, although the loss is still strictly faithful given an
infinite shot budget, with a reasonable shot budget we will
not be able to resolve the contribution from the exponen-
tially small high-body terms. Hence, there can be spurious
minima that we cannot resolve from the true minimum and
therefore for all practical purposes the loss is effectively not
truly faithful.

One approach to resolving this tension would be to
adapt the initial value of σ from Θ(n), where the loss ex-
hibits large gradients but predominantly learns low-order
marginals, towards O(1) to also learn high-order correla-
tions as the model improves. This is in line with studies
from the classical ML literature showing that bandwidths
for optimal MMD performance are oftentimes smaller than
the so-called median heuristic [88–90], which coincides with
our result of σ ∈ Θ(n). Another approach, which is also
already employed in classical ML literature, is to use a ker-
nel that averages the effects of several σ [84–86]. That is,
the kernel is taken to be

Kc(x,y) =
1

|c|
∑
i∈c

Kσi(x,y) ≡
k∑
l=1

〈wσ(l)〉cD2l (46)

for a set of bandwidths c = {σ1, σ2, ...}. The resulting
weight of each 2k−body term of the new MMD observable
is an average of the weightings corresponding to each σi in
c as shown in Fig. 4. Theorem 2 shows that for a QCBM
without inductive bias to not fall prey to exponential con-
centration, at least one of the σi needs to be Θ(n). But the
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results of Proposition 4 suggest that for data sets exhibiting
high-order correlations a small bandwidth σi ∈ O(1) is re-
quired for correct convergence. It stands to reason that the
optimal set c contains a spectrum of bandwidths that both
enable trainability and faithful convergence to the target
distribution (as sketched in Fig. 4c)). How successful this
strategy is in practice remains to be determined.

Broader Implications. Our work highlights that one can
treat classical machine learning losses as quantum observ-
ables to study their properties. This implies that our re-
sults transfer to other types of quantum generative models
beyond the QCBM that will also be affected by the fun-
damental limitations described by Proposition 4. In fact,
we show in Appendix C 4 that any generative modelling
loss function for classical data that can be brought into
the form L(θ) = Tr[Mρθ], with a diagonal measurement
operatorM, faces the same tension described above. That
is, ifM contains at most k-body terms in the Pauli basis
representation, then the loss cannot distinguish two distri-
butions that agree on all k-order marginals but disagree
on higher-order marginals. Thus losses composed exclu-
sively of local terms (with the conventional measurement
strategy) cannot be used in generative modelling to learn
complex higher-order correlations.

With a little thought it becomes clear that an exclusively
global loss is also undesirable. Not only do such losses ex-
hibit exponential concentration for unstructured circuits,
they will also in general possess spurious minima in virtue
of only probing global properties of the distribution (i.e.
the average global parity), as shown in Fig 4. Instead we
advocate using full -body losses which contain both low and
high-body terms, such as those obtained by averaging in
Fig. 4. Even then, global contributions cannot be vanish-
ingly small or else they will not be possible to resolve with
a realistic shot budget.

For another example, one may aim to train a quan-
tum generative model using a QGAN framework, where
a Discriminator D provides a score D(x) to every sam-
ple. The corresponding operator can then be written as
M =

∑
xD(x)|x〉〈x|. The Discriminator may have to ini-

tially implement an effectively low-bodied operator to facil-
itate initial gradients, but later in training become higher-
bodied to learn global features. That is not to say that
the Discriminator should only classify marginals of the bit-
string such as in Ref. [91]. Rather, the architecture and
initialization should be such that the operator M in the
Pauli basis initially contains low-body terms but can in-
clude high-body terms during convergence. Interestingly,
the interpolation from trainable to faithful could be nat-
urally full-filled during training when the Generator and
Discriminator are optimized in tandem.

Fine tuning the interplay between the loss function gra-
dients, density of local minima and the faithfulness of a
generative loss is beyond the scope of this work, but is an
important direction for future research. We especially em-
phasize the necessity to evaluate the implications of our
results on models and datasets of practical relevance. In
Section IV we take steps in this direction by investigat-
ing training a QCBM to model real data from the HEP
domain.

C. Quantum strategies: quantum fidelity

While the classical fidelity in Eq. (8) is an explicit cost
function, the quantum fidelity, defined in Eq. (15), allows
for a simple known quantum estimation strategy. Key to
the quantum fidelity loss is to interpret the training distri-
bution as a target state |φ〉 =

∑
x

√
p̃(x) |x〉. The QCBM

model loss can then be rewritten as the expectation of an
observable, e.g. in the form of Eq. (19), with ρ = |φ〉〈φ| and
O = |0〉〈0| being the all-zero projective measurement. Cru-
cially, as O = |0〉〈0| is a global projector, the quantum fi-
delity is subject to a globality-induced barren plateaus [31]
and the loss exponentially concentrates towards one [23].
That is, we have

Varθ[LQF (θ)] ∈ O(1/bn) . (47)

This global-measurement-induced barren plateau can how-
ever be avoided by localising LQF (θ). That is, we replace
the global projective measurement |0〉〈0| with its local ver-
sion HL = 1

n

∑n
i=1 |0i〉 〈0i|⊗1ī, where ī indicates all qubits

except qubit i. The new localised version of the quantum
fidelity loss is given by

L(L)
QF (θ) = 1− 〈φ|U(θ)HLU

†(θ) |φ〉 . (48)

This local loss is faithful to its global variant for product
state training in the sense that it vanishes under the same
conditions [92], i.e. when the QCBM distribution matches
the data distribution exactly. However, it enjoys trainabil-
ity guarantees via the results of Ref. [31]. This implies
that, unlike the MMD and other classical losses that uti-
lize the conventional measurement strategy, the local quan-
tum fidelity can effectively distinguish between high-order
marginals even at k = 1 bodyness. However, although the
local loss function can evade global measurement-induced
BPs, it still suffers under BPs from other sources, such as
expressibility or noise. Additionally, it is not yet explored
how practical a fidelity loss is for the purposes of general-
izing from training data.

Fig. 7 depicts numerical variance results for the fidelity
loss on a range of datasets, circuit depths and numbers of
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Figure 7. Study of loss concentration with the local quantum fidelity loss function. Numerical evidence that the local
quantum fidelity loss function does not exhibit global or explicit loss function barren plateaus. It does however exhibit expressivity-
induced barren plateaus, as it is the case for all VQA-type loss functions in the form of Eq. (19). In contrast, the global quantum
fidelity variance decays exponentially at all circuit depths. The numerical setup is the same as for the MMD in Fig. 6.

qubits. For all datasets, the local quantum fidelity exhibits
only polynomially decaying variance over random parame-
ters when the quantum circuits are not too deep. As a ref-
erence, we additionally depict the global quantum fidelity
which exponentially decays for all circuit depths.

The challenge now becomes how to estimate L(L)
QF (θ) us-

ing measurements from the quantum computer. The seem-
ingly straight-forward approach is to prepare the initial
state |φ〉, evolve it under U†(θ), and then evaluate the ob-
servable defined by HL through measurements in the com-
putational basis. However, loading classical data into a
quantum state |φ〉 is not expected to be feasible in general.
In Appendix D, we propose an approach that can be used
to estimate L(L)

QF (θ) using a series of Hadamard tests with-
out needing to prepare |φ〉. We note that, while in theory
our approach requires a number of Hadamard tests that
scales with the amount training data, we expect stochastic
techniques, such as stochastic gradient descent [93], to be
sufficient in practice.

Broader Implications. In this section we have presented
one example of a quantum strategy to measure a fidelity-
based loss for quantum generative modelling. While this
approach puts more load on the quantum computer as com-
pared to losses employing the conventional measurement
strategy, it enjoys simultaneous trainability and faithful-
ness to the target distribution.

An interesting extension would be to explore other quan-
tum approaches for efficiently training QML models. One
could for example attempt to compute the KL divergence

or other explicit losses directly on the quantum computer.
Although the implementation of non-linear operations on
quantum computers has been demonstrated in Ref. [94–96],
we are not yet aware of quantum strategies beyond one re-
lated demonstration for the Rènyi divergence in Ref. [97].
One alternative approach would be to attempt to indirectly
turn the QCBM into an explicit generative model by esti-
mating its probabilities using amplitude amplification or
other techniques.

IV. TRAINING ON A HEP DATASET

In this section, we perform realistic training of QCBMs
on a more practical dataset which is derived from HEP col-
liders experiments. We compare the implicit cost functions
MMD and local quantum fidelity (LQF) with the explicit
KL divergence for an increasing number of circuit depth L
and the number of qubits n, and across several measure-
ment budgets. To summarize our results, we observe that
the presence of shot noise causes the training with KLD to
fail, while the MMD and LQF both hold up significantly
better.

Dataset. We consider a dataset consisting of energy de-
positions in an electromagnetic calorimeter (ECAL) [98].
The data was generated using a Monte Carlo approach
(theGeant4 toolkit [99]), which accurately describes the
ECAL detector behaviour under a typically proton- pro-
ton collision at a LHC experiment. The dataset consists
of the energy deposition on a 25 × 25 × 25 grid, that we



17

Figure 8. Finite-shot comparison of loss functions. TVD, computed with infinite statistics, on the training curve of the
QCBMs with varying number of qubits n = 4, n = 9 and n = 12 (rows) and layers (symbols), where the gradients are computed
with different number of shots (columns) for different loss function (colours).

downsized to a two dimensional grid of various sizes. The
images are converted to a black and white scale by consider-
ing the pixel ‘hit’ if the energy deposition exceeds a certain
threshold, which is chosen as one tenth of the mean energy
deposit. We map each pixel to a qubit and take the state
|1〉 to represent a hit. This dataset naturally has a polyno-
mial support and thus is precisely the type of dataset that
we might hope to learn using quantum machine learning.

Training. We use a parametrized quantum circuit of
the form

U(θ) =

[
L∏
l=1

R(θl)Wl(αl)

]
R(θ0) , (49)

where R(θl) is a layer of arbitrary single qubit unitaries
that can be parameterised using 3n Euler angles,W (αl) :=∏n−1
i=1 CXi,i+1RYi(αil)CXi,i+1 acts as parametrized entan-

gling gate with CXi,j a CNOT gate between qubits i and
j and RYi(αil) a single qubit rotation of qubit i around the
y-axis, and the parameters θ = {θl,αl}. We use the total
variation distance (TVD), see Eq. (7), as a common metric
to assess the performance of each loss function. To verify
performance accurately, we compute the TVD using ex-
act simulation. The gradients for each loss are computed
using the parameter shift rule [100] which provides esti-
mates of the analytical gradient, and the parameters are
updated with the ADAM [101] optimizer with a decaying
learning rate lr(t) = max (0.01e−βt, 10−5), where t is the
optimization step and β = 0.005 the decaying rate. The
computation of the KLD is stabilised using a regulariser
of ε = 10−6, which has been tuned through trial and er-
ror. To follow best-practices with the MMD, we average
the gradient estimation over several different bandwidths

σ =
(
0.01, 0.1, 0.25, 0.5, 1, 10

)
n , (50)
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Figure 9. 16 qubit QCBM training. a) TVD, computed with infinite statistics on the training curve of n = 16 QCBM with
log2 n = 4 layers trained with 1000 shots. Since the computations are more expensive, only one training curve is shown for the
MMD, while for the KLD and LQF, ten and six repetitions are performed respectively. b) Histograms of the trained QCBMs,
where only the 15 most-occurring images, shown in panel c), are displayed. The black lines denote the target probabilities.

which incurs no additional quantum resources. This makes
the loss full-bodied and thus keeps the model trainable
while aiding convergence. We note that these are likely
not the optimal bandwidths to average over but it demon-
strates the best-practice approach.

Results. Fig. 8 shows the TVD, computed with infi-
nite statistics, on the training curve of the QCBMs with
varying number of qubits n ∈ {4, 9, 12} (rows) and layers
(symbols), where the gradients are computed with differ-
ent number of shots (columns) for different loss function
(colours). The lines denote the median over ten random
parameter initialisation while the shaded area denotes the
25% to 75% percentile. We observe that the performance
of the KLD quickly deteriorates as the number of shots is
reduced while the MMD and local quantum fidelity (LQF)
remain more stable. We further observe that increasing
the expressivity of the QCBM from log2 n to n layers does
not lead to a significant increase in performance for a low
number of shots.

To demonstrate the scalability to larger systems, we also
train a n = 16 QCBM with log2 n = 4 layers and 1000
shots per function evaluation. We performed a manual
search over different ansatz structures and used the best
performing one across the losses. Hence, a slightly differ-
ent ansatz from Eq. (49) is used, where the difference is in
the entanglement map, which is replaced by

∏
i<j CXi,j .

In panel a) of Fig. 9, we depict the median and 25% to
75% percentiles for the KLD and LQF over 10 and 6 ran-

dom repetitions respectively, whereas we only show a single
representative example for the MMD. In panel b) we show
the probability histograms of the 15 most occurring images
in the dataset, as well as the final respective model proba-
bilities. The corresponding 4×4 pixel images are displayed
at the bottom panel c).

In this 16-qubit example, it appears that the LQF is
no longer performing on-par with the MMD, as was the
case in Fig. 8 for smaller system sizes. A possible ex-
planation is that one chooses all relative phases in the
data state |φ〉 =

∑
x

√
p̃(x)|x〉, which strongly reduces

the number of wavefunctions that minimize the LQF loss
even though they may produce the desired measurement
distribution. This may not only produce less solutions, it
also enforces that the ansatz needs to be able to express
exactly that state. While this could be leveraged using
specialized real-valued ansätze, this is not attempted here.
We conclude that the practical properties of the LQF loss
as compared to implicit losses using the conventional mea-
surement strategy are still to be studied in more detail.

To emphasise the importance of the size of the support,
in Appendix E we also consider an exponential version of
the dataset, by using a negative logarithm transformation.
We find in this case that the KLD does not suffer from ex-
ponential concentration and can be trained. This explains
the successes previously observed for training QCBMs us-
ing the KLD for small scale problems. However, as the
amount of classical training data cannot scale exponentially
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these successes are not relevant to larger, non-classically
simulable, problems.

V. DISCUSSION

In this work, we have introduced the notion of explicit
and implicit losses, which broadly reflect the capabilities of
explicit and implicit generative models [45]. We argue that
these concepts provide a useful framework to understand
the trainability of quantum generative models. In partic-
ular, we argue that the mismatch between the indirect
access to probabilities provided by implicit models with
the explicit probabilities required by explicit losses ren-
ders implicit models untrainable via explicit losses. More
concretely, focusing our attention on quantum circuit Born
machines as a commonly used implicit model, we prove that
pairwise explicit losses exponentially concentrate (Theo-
rem 1). This result prohibits efficient training using a large
class of commonly-used losses including the KL divergence,
JS divergence and the total variation distance. Such losses
may however be usable with explicit “quantum” generative
models such as tensor network Born machines [55, 56, 102].

Crucially, our results assume access to a polynomial (in
the number of qubits) number of training data samples and
measurements from the quantum circuit. With only mod-
erate numbers of qubits, this assumption is unnecessary
and explicit losses such as the KL divergence may appear
to be trainable (see e.g. Refs. [16, 17, 19–21]). More gener-
ally, if we restrict the number of qubits used to classically
simulable sizes, this assumption can be lifted and one could
use quantum generative models purely for their efficient
sampling capabilities. However, to harness the full poten-
tial of quantum generative modelling one surely wants to
push to non-classically tractable problem sizes, at which
point this assumption is essential. For example, even with
only 50 qubits, access to ∼ 250 ≈ 1015 training samples or
quantum measurements is unrealistic.

While formulated initially for random quantum circuits,
the intuition underlying Theorem 1 suggests our no-go
result extends to scenarios where the implicit genera-
tive model’s measurement distribution only has polyno-
mial support (e.g., near-identity initialization of the cir-
cuit [103]), as well as beyond the pairwise explicit form
of the explicit loss. One exception may be if the quan-
tum generative model has a strong inductive bias. Hence
our work further motivates the search for new methods for
constructing parameterised circuits with strong inductive
biases (e.g. via warm starts [104] or incorporating symme-
try constraints [41, 105–108]).

In contrast to explicit losses, implicit losses are natu-
rally suited to training implicit models. Within this line of

thought, we have identified the MMD loss with a Gaussian
kernel as a promising implicit loss for training QCBMs. We
show that this loss can be interpreted as the expectation
value of a quantum observable, where crucially the proper-
ties of the observable depend on the bandwidth parameter
σ. In the common case where σ is independent of the sys-
tem size, σ ∈ O(1), the observable becomes predominantly
global and thus exponentially concentrates. Conversely,
when σ scales linearly with the system size, σ ∈ Θ(n), the
low-body interaction terms in the observable are largely
dominant over the global terms and hence exhibits large
gradients. We provide a rigorous theoretical guarantee for
the case of a QCBM with a randomly initialized tensor
product ansatz, showing that the MMD variance scales at
least polynomially with the number of qubits. Based on
the low-body operator interpretation of the MMD loss and
numerical evidence up to 20 qubits, we further argue that
the MMD loss with σ ∈ Θ(n) should remain trainable for
quantum circuits with O(log(n)) depth.

Our main results for explicit and implicit losses assume
the conventional strategy for estimating a generative loss
function from an implicit model, where the model provides
a set of samples in the computational basis, which are then
used to estimate the loss in conjunction with the training
data samples. While this is the standard classical strategy,
quantum generative models can employ alternative quan-
tum strategies by leveraging quantum computing power.
As an example, we propose the local quantum fidelity as
a trainable loss function for generative modelling. Devel-
oping alternative quantum strategies for training quantum
generative models is an interesting avenue for future re-
search. A natural candidate might be, as suggested in
Ref. [13], to implement the MMD loss with a quantum ker-
nel, where the kernel values themselves are estimated using
quantum computers. While one could hope for a potential
quantum advantage with this approach (especially when
training on quantum data), there is the additional chal-
lenge that quantum kernels without inductive bias tend to
exponentially concentrate [29].

To put our conclusions to the test, we studied how these
loss functions perform in more practical scenarios with data
derived from High Energy Physics experiments at the LHC.
This dataset naturally satisfies our assumptions of a poly-
nomial number of data samples at all system sizes. Our
training results are found to be consistent with our theo-
retical predictions in which both the MMD and quantum
fidelity losses significantly outperform the KLD loss when
a strict measurement budget is employed.

Finally, while our work addresses the question of whether
a given loss exhibits non-exponentially vanishing gradients,
we stress that this is just one ingredient among many to
ensure the success of quantum generative modelling. Of
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particular importance is the observation that models with
local losses will generally struggle to learn global correla-
tions due to the function’s inability to distinguish high-
order features in the data. Hence we advocate using full -
body losses, which contain both low and high-body terms,
for quantum generative modelling. More broadly, the abil-
ity of a model to successfully generalize will also presum-
ably depend on the choice in loss, but this is beyond the
scope of this work. Nonetheless, ensuring non-vanishing
loss gradients and ensuring faithfulness of the loss function
are critical steps since failing here precludes the successful
training and generalization of quantum generative models.

Hence, our work constitutes an important first step to un-
derstanding of the barriers that need to be overcome to
achieve a quantum advantage in generative modelling.
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Appendix

Appendix A: Technical nuances in explicit and implicit losses

In this work, we have argued that there are two main classes of loss functions for generative modelling tasks. First are
explicit losses which have the form

Lexpl(θ) :=
∑
x1...xr

f
(
p(x1), ..., p(xr), qθ(x1), ..., qθ(xr)

)
, (A1)

where f(·) is a function that depends on the target probabilities p(xi) and model probabilities qθ(xi) for data variables
xi ∈ X with i = 1, ... , r (but not the data samples themselves). The other are implicit loss functions which are expressed
as

Limpl(θ) := Ex1,...,xr∼{p,qθ} g(x1, ...,xr) , (A2)

where g(x1, ...,xr) is some function that depends on the data (but not probabilities), and an expectation is over data
variables x1, ...,xr sampled either from the data distribution p or the model distribution qθ.

While almost all practical loss functions for generative models fall either into the definitions of explicit or implicit losses
(see Sec. II B), there exists a technical caveat which allows loss functions to be classified both as explicit and implicit.
To provide a rather general example, we consider a general loss of the form

L(θ) =
∑
x,y∈X

qθ(x)p(y)g(·) (A3)

= Ex∼qθ,y∼p[g(·)] (A4)

where the function g is for now left arbitrary. By comparing Eq. (A3) and Eq. (A1), we can see that for L(θ) to be an
explicit loss g cannot depend on x,y. Conversely, by comparing Eq. (A4) and Eq. (A2), for L(θ) to be implicit, g cannot
depend on p(x) or qθ(y) . Thus, it appears impossible for such a function to be both explicit and implicit. However,
taking g as the Kronecker delta δx,y allows one to straddle the definitions. That is, for g = δx,y, L(θ) is implicit as it
can still be written as an average over samples in Eq. (A4) but also we can write L(θ) =

∑
x∈X qθ(x)p(x) which is of

the form of an explicit loss given in Eq. (A1).
This case is not just purely hypothetical and arises, for example, for the MMD loss, Eq. (13), with the kernel K(x,y) =

δx,y. Here we have

L(θ) =
∑
x,y∈X

qθ(x)qθ(y)δx,y − 2
∑
x,y∈X

qθ(x)p(y)δx,y +
∑
x,y∈X

p(x)p(y)δx,y

=
∑
x∈X

qθ(x)2 − 2qθ(x)p(x) + p(x)2

=
∑
x∈X

(qθ(x)− p(x))
2
, (A5)

which takes the form of a pairwise explicit loss (see Eq. (3)). Consequently, the MMD is always an implicit loss function,
but with this particular choice of kernel, it can additionally gain an explicit character. Interestingly, this loss is now very
related to the TVD loss in Eq. (7) for which there exists no implicit form.

This example highlights that the distinction between explicit and implicit losses become non-mutually exclusive for
implicit losses formulated using delta functions. Instead of adding this exception into either of the definitions of explicit
or implicit losses, we acknowledge and embrace its existence. Through the steps outlined in Eq. (A5), it may be possible
to transform an explicit function exactly or approximately into a form which falls under the definition of an implicit
function, which could then seemingly be used with implicit models. This may include functions whose Taylor series
expansion in the probabilities converges quickly and can thus be approximated with a finite number of terms. Any term
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with a positive integer power in the probabilities can then be transformed into an expectation over samples by leveraging
the procedure outlined above. Unfortunately, we are not yet aware of any practical examples. In fact, we show that a
function which can be classified as a pairwise explicit function directly suffers from untrainability with the conventional
measurement strategy. There may however be cases where a quantum strategy can be found that leverages this δ-trick.

Appendix B: Analysis on pairwise explicit loss functions

Here we detail the proofs of our no-go results regarding the pairwise explicit loss function. In particular, Theorem 1,
which concerns the concentration of a statistical estimate of a pairwise explicit loss, is proved in Appendix B 1. In
Appendix B 2, we show that a generative model with polynomial support but which has no inductive bias that aligns
with the target distribution is untrainable. Finally, we use the Theorem 1 to derive Corollary 2 in Appendix B 3, showing
the untrainability of the pairwise explicit loss.

For convenience, we recall relevant terms and notations. We are interested in training the model probabilities qθ(x)
to match some unknown target distribution p(x) by minimizing the pairwise explicit loss of the form

L(θ) =
∑
x

f(p(x), qθ(x)) , (B1)

where f(·) is some arbitrary function that measure the similarity between p(x) and qθ(x). As a reminder, this pairwise
form encompasses the broad range of practical loss functions including the famous KL divergence, JS divergence, total
variational distance as well as classical fidelity. See Sec. II B for details.

Given the training dataset P̃ and model samples Q̃θ corresponding to the empirical probabilities p̃(x) and q̃θ(x)
respectively, the statistical estimate of the loss function can be written as

L̃(θ) =
∑
x

f(p̃(x), q̃θ(x)) . (B2)

Crucially, we emphasise that, for the large system’s size, the number of training data and model samples can scale at
most polynomially with the number of qubits i.e., M = |P̃ |, N = |Q̃θ| ∈ O(poly(n)).

1. Concentration of the pairwise explicit loss function: Proof of Theorem 1

In this section, we rigorously prove Theorem 1, which shows the concentration of the statistical estimate of the pairwise
explicit loss. For convenience, the theorem is recalled below.

Theorem 1 (Concentration of pairwise explicit loss for concentrated models). Consider the loss function of the form in
Eq. (3). Assume that for all bitstrings in the training dataset, x ∈ P̃ , the quantum generative model qθ(x) exponentially
concentrates towards some exponentially small value (as defined in Definition 1). Suppose that N ∈ O(poly(n)) samples
are collected from the quantum model corresponding to the set of sampled bitstrings Q̃θ, and that the training dataset P̃
contains M ∈ O(poly(n)) samples. We define the fixed point of the loss as

L0(P̃ , Q̃θ) =
∑
x∈P

f(p̃(x), 0) +
∑
x∈Qθ

f(0, q̃θ(x)) , (B3)

with P (and Qθ) being a set of unique bitstrings in P̃ (and Q̃θ). Then, the probability that the estimated value L̃(θ) is
equal to L0(P̃ , Q̃θ) is exponentially close to 1, i.e.,

PrQ̃θ,θ[L̃(θ) = L0(P̃ , Q̃θ)] > 1− δ , (B4)

with δ ∈ O
(

poly(n)
cn

)
for some c > 1.
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Proof. The statistical estimate L̃(θ) is equal to L0(P̃ , Q̃θ) =
∑
x∈P f(p̃(x), 0) +

∑
x∈Qθ f(0, q̃θ(x)) when there is no

overlap between P̃ and Q̃θ i.e., P̃ ∩ Q̃θ = {}. The proof of the theorem is equivalent to proving that, after taking N
measurement shots, the probability of not obtaining any bitstrings in the training dataset is exponentially close to 1.
The probability that there is no overlap between P̃ and Q̃θ is the probability that q̃θ(x) = 0 for all x ∈ P which is also
equivalent to Pr

[∑
x∈P q̃θ(x) = 0

]
as q̃θ(x) > 0 for all x ∈ X . So, we have

PrQ̃θ,θ[L̃(θ) = L0(P̃ , Q̃θ)] =PrQ̃θ,θ

[∑
x∈P

q̃θ(x) = 0

]
(B5)

=

∫ 1

0

PrQ̃θ

[∑
x∈P

q̃θ(x) = 0

∣∣∣∣∣ ∑
x∈P

qθ(x) = s

]
Prθ

[∑
x∈P

qθ(x) = s

]
ds (B6)

=

∫ 1

0

(1− s)NPrθ

[∑
x∈P

qθ(x) = s

]
ds (B7)

>
∫ µs+

√
σs

µs−
√
σs

(1− s)NPrθ

[∑
x∈P

qθ(x) = s

]
ds (B8)

>(1− (µs +
√
σs))

N

∫ µs+
√
σs

µs−
√
σs

Prθ

[∑
x∈P

qθ(x) = s

]
ds (B9)

>(1− (µs +
√
σs))

N (1− σs) . (B10)

In the second equality Bayes’ theorem is used to introduce the conditional probability of non-overlap between model
samples and the training dataset for given s =

∑
x∈P qθ(x) and the marginal probability is obtained by summing over

all possible values of
∑
x∈P qθ(x). The third equality uses the independence of each model sample and the fact that the

probability that one drawn model bitstring is not in the training dataset is given by (1− s). The first inequality is due
to restricting the integration range (as the integrand is always greater than zero) with µs and σ2

s being the mean and
variance of

∑
x∈P qθ(x) over θ. The second inequality is due to taking the maximum value of s and thus the minimum

value of (1 − s)N within the integration range. To see how to reach the last line, we invoke Chebyshev’s inequality on∑
x∈P qθ(x)

Prθ

[∣∣∣∣ ∑
x∈P

qθ(x)− µs
∣∣∣∣ > kσs

]
6

1

k2
. (B11)

By specifying k = 1/
√
σs and inverting the inequality, we have

Prθ

[∣∣∣∣ ∑
x∈P

qθ(x)− µs
∣∣∣∣ 6 √σs

]
> 1− σs . (B12)

With
∫ b
a
Pr[x]dx = Pr[a 6 x 6 b], we then get Eq. (B10).

To further bound the probability, we show that µs and σ2
s are exponentially small in the number of qubits. First,

consider the mean

µs =Eθ

[∑
x∈P

qθ(x)

]
(B13)

=
∑
x∈P

µ(x) (B14)

6Npmaxx∈P [µ(x)] , (B15)



28

with Np = |P| 6 M ∈ O(poly(n)) and µ(x) being the average of qθ(x) over θ. As maxx∈P [µ(x)] ∈ O(1/bn) for some
b > 1 (due to the assumption that the fixed points are exponentially small), this leads to µs ∈ O(poly(n)/bn).

Then, the variance can be upper bounded as

σ2
s =Varθ

[∑
x∈P

qθ(x)

]
(B16)

=
∑
x∈P

Varθ [qθ(x)] +
∑

x,x′∈P
x 6=x′

Covθ [qθ(x), qθ(x′)] (B17)

6
∑
x∈P

Varθ [qθ(x)] +
∑

x,x′∈P
x6=x′

√
Varθ [qθ(x)] Varθ [qθ(x′)] (B18)

6
∑
x∈P

Varθ [qθ(x)] +
∑

x,x′∈P
x 6=x′

Varθ [qθ(x)] + Varθ [qθ(x′)]

2
(B19)

=Np
∑
x∈P

Varθ[qθ(x)] (B20)

6N2
pmaxx∈P [σ2(x)] , (B21)

where in the first inequality we have used Cauchy-Schwarz, and the second inequality is the inequality of arithmetic and
geometric means √xy 6 (x + y)/2 for x, y > 0. σ2(x) is the variance of qθ(x) over θ. Finally, assuming that qθ(x′)
exponentially concentrates over all bitstrings in the dataset, we have σs ∈ O(poly(n)/b′n) for some b′ > 1.

Now, we are ready to continue from Eq. (B10).

PrQ̃θ,θ[L̃(θ) = L0(P̃ , Q̃θ)] >(1− (µs +
√
σs))

N (1− σs) (B22)

>(1−N(µs +
√
σs))(1− σs) (B23)

>1− (N(µs +
√
σs) + σs) (B24)

>1−
(
N

(
Npmaxx∈P [µ(x)] +

√
Npmaxx∈P [σ(x)]

)
+Npmaxx∈P [σ(x)]

)
(B25)

=1− δ , (B26)

where in the second inequality we use Bernoulli’s inequality, the third inequality is due to dropping the positive term
when expanding the product, and in the last inequality we use Eq. (B15) and Eq. (B21). In the last line, we denote
δ = N

(
Npmaxx∈P [µ(x)] +

√
Npmaxx∈P [σ(x)]

)
+ Npmaxx∈P [σ(x)] and given the polynomial scaling of N and Np as

well as the exponential scaling of maxx∈P [µ(x)] and maxx∈P [σ(x)], we have

δ ∈ O
(

poly(n)

cn

)
, (B27)

for some c > 1. This completes the proof of the theorem.

2. No overlap for a model without inductive bias and with polynomial support

Theorem 1 applies for any parameterized circuit such that the model probabilities are concentrated over the bitstrings
in the training set. This can occur if the model probabilities are exponentially concentrated over all bitstrings in X .
This is typically true for any unstructured circuit, such as those given in Proposition 1. However, the requirement that
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the model probabilities are concentrated over the bitstrings in the training set (but not neccesarily all bitstrings) is much
weaker. Crucially, this happens even when the model has polynomial support on the space of bitstrings (see Fig. 2). As
an example, we show that if the model does not impose a strong inductive bias that aligns with the target distribution,
it is generally unlikely that samples from the model have any overlap with the training dataset, which in turn results in
the model becoming untrainable. Specifically, we prove the following Supplemental Proposition.

Supplemental Proposition 1 (Concentration of pairwise explicit losses for models lacking inductive bias). Consider
the scenario where the generative model has polynomial support which is chosen at random. The probability that these
bitstrings are not in the training set P̃ is exponentially close to 1. That is, with probability

PrQ̃θ,θ[L̃(θ) = L0(P̃ , Q̃θ)] > 1− δ′ , δ′ ∈ O
(

poly(n)

c′n

)
, (B28)

for some c′ > 1, and L0(P̃ , Q̃θ) the statistical estimate of the loss as defined Eq. (20).

Proof. Denote NP and NQ as the number of non-zero probabilities in the training and model distributions, respectively,
i.e., their support. Given that the model support is chosen randomly, there are

(
2n−NP
NQ

)
ways of picking non-zero model

probabilities such that the supports do not overlap. Then, the probability that there is no overlap between the two
distributions is

PrQ̃θ,θ[L̃(θ) = L0(P̃ , Q̃θ)] =

(
2n−NP
NQ

)(
2n

NQ

) (B29)

=
(2n −NQ)× ...× (2n −NQ −NP + 1)

2n × ...× (2n −NP + 1)
(B30)

=

NP−1∏
k=0

2n −NQ − k
2n − k (B31)

=

NP−1∏
k=0

(
1− NQ

2n − k

)
(B32)

>

(
1− NQ

2n −NP + 1

)NP
(B33)

> 1− NQNP
2n −NP + 1

, (B34)

where the first lower bound is due to taking the smallest term in the product and the last inequality is due to the
Bernoulli’s inequality (1− x)n > 1− nx. For the polynomial supports NQ, NP ∈ O(poly(n)), the lower bound becomes
exponentially close to 1, which completes the proof.

This Supplemental Proposition highlights that the fundamental problem underlying exponential concentration is the
miss-alignment of the model probabilities and the training data. Any randomly chosen quantum circuit ansatz with
random parametrization is bound to fail with an explicit loss because of the exponentially large space of bitstrings.

A concrete example that falls short is the case of near-identity initialization of the quantum circuit U(θ) of a QCBM,
which corresponds to a near-zero initialization of the parameter vector θ. While in the context of VQA-type problems
it has been shown to mitigate vanishing gradients at the initial training step [103], this strategy induces only significant
probabilities on a polynomial number of bitstrings and thus leads to exponential concentration for general datasets. The
reason is that the all-zero bitstring and bitstrings that are few bit-flips away from it have no a priori reason to be relevant
to the modelling task.

A minimal expansion of the near-identity initialization, which appears to introduce inductive bias but does not neces-
sarily so, is to initialize the quantum circuit model in one of the training states. That is, one sets |ψ(θ)〉 = |x0〉 in an
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attempt to avoid loss concentration around the initialization. While this does in fact exhibit initial gradients towards
qθ(x0) = p̃(x0), the chance that the model then contains a non-vanishing probability on a significant number of other
samples x 6= x0 is still low (or likely exponentially low). A possible exception would be a dataset exhibiting cluster
behaviour in the space of bitstrings. Then one could indeed initialize in and around the centroid bitstring and likely
achieve improved performance across various metrics.

3. Untrainability of the pairwise explicit loss function: Proof of Corollary 2

In this sub-section, we provide the proof of Corollary 2, which shows that the concentration of statistical estimate of
the pairwise explicit loss makes such losses untrainable.

Corollary 2 (Untrainability of the pairwise explicit loss function). Under the same conditions as in Theorem 1, the
probability that the difference between the two statistical estimates of the loss function at θ1 and θ2 does not contain any
information about the training distribution is exponentially close to 1. Particularly, we have

PrQ̃θ,θ[L̃(θ1)− L̃(θ2) = ∆L0(Q̃θ1 , Q̃θ2)] > 1− 2δ , (B35)

with δ ∈ O
(

poly(n)
cn

)
for some c > 1, Q̃θ1

(and Q̃θ2
) is a set of sampling bitstrings obtained from the quantum generative

model at the parameter value θ1 (and θ2), as well as

∆L0(Q̃θ1
, Q̃θ2

) =
∑
x∈Qθ1

f(0, q̃θ1
(x))−

∑
x∈Qθ2

f(0, q̃θ2
(x)) , (B36)

with Qθ1
(and Qθ2

) being a set of unique bitstrings in Q̃θ1
(and Q̃θ2

). Crucially, ∆L0(Q̃θ1
, Q̃θ2

) does not depend on
any p̃(x) ∈ P̃ .
Proof. We first note that

L0(P̃ , Q̃θ1
)− L0(P̃ , Q̃θ2

) =

∑
x∈P̃

f(p̃(x), 0) +
∑
x∈Q̃θ1

f(0, q̃θ1
(x))

−
∑
x∈P̃

f(p̃(x), 0) +
∑
x∈Q̃θ2

f(0, q̃θ2
(x))

 (B37)

=
∑
x∈Q̃θ1

f(0, q̃θ1
(x))−

∑
x∈Q̃θ2

f(0, q̃θ2
(x)) (B38)

=∆L0(Q̃θ1 , Q̃θ2) . (B39)

As estimating the loss function at θ1 and θ2 are two independent events for |Q̃θ1 |, |Q̃θ1
| ∈ O(poly(n)), we have

PrQ̃θ,θ[L̃(θ1)− L̃(θ2) = ∆L0(Q̃θ1 , Q̃θ2)] =PrQ̃θ,θ[L̃(θ1) = L0(P̃ , Q̃θ1) ∩ L̃(θ2) = L0(P̃ , Q̃θ2)] (B40)

=PrQ̃θ,θ[L̃(θ1) = L0(P̃ , Q̃θ1)] · PrQ̃θ,θ[L̃(θ2) = L0(P̃ , Q̃θ2)] (B41)

>(1− δ)(1− δ) (B42)
>1− 2δ , (B43)

where the second equality is due to the independence of two events, the first inequality is from applying Theorem 1 and
the last line is from dropping the δ2 term.

Appendix C: Analysis on the MMD loss function

In this section, we provide analysis on the MMD loss functions, including detailed proofs as well as further discussion
of our analytical results in the main text. Specifically, Appendix C 1 shows how the MMD loss can be viewed as the



31

expectation of an observable and analyzes how its properties depend on the bandwidth σ. A detailed analysis of the
MMD loss landscape for a tensor product QCBM is provided in Appendix C 2. Lastly, in Appendix C 3, we investigate
the suitability of the MMD for learning global properties of a target distribution depending on our choice in bandwidth
parameter.

For convenience, we start by recalling that the MMD loss is of the form

LMMD(θ) =
∑
x,y∈X

qθ(x)qθ(y)K(x,y)− 2
∑
x,y∈X

qθ(x)p(y)K(x,y) +
∑
x,y∈X

p(x)p(y)K(x,y) , (C1)

with the classical Gaussian kernel

Kσ(x,y) = e−
‖x−y‖22

2σ (C2)

=

n∏
i=1

e−
(xi−yi)

2

2σ , (C3)

where ‖.‖2 is the 2-norm, σ > 0 is the so-called bandwidth parameter, and xi, yi are the value of bit i in bitstrings x,y
(of length n), respectively.

1. MMD as an observable

In this section, we explain how the MMD loss function can be seen as an expectation value of some observable and
analyse how the observable behaves for different values of the kernel bandwidth.

We start by noting that each term in the MMD loss function can be seen as the expectation value of an observable

M(ρ, ρ′) = Tr
[
O

(σ)
MMD(ρ⊗ ρ′)

]
, (C4)

with the MMD observable defined as

O
(σ)
MMD :=

∑
x,y

Kσ(x,y)|x〉〈x| ⊗ |y〉〈y| , (C5)

which acts on 2n qubits. To obtain each term in the MMD, ρ and ρ′ can be either the quantum state of our QCBM
model ρθ = |ψ(θ)〉〈ψ(θ)| and/or the quantum state corresponding to the training data ρp̃ such that p̃(x) = Tr[ρp̃|x〉〈x|].
In particular, for computing the first MMD term, we have both ρ = ρ′ = ρθ and, for computing the cross-term, we have
ρ′ = ρp̃ instead, and for the final term ρ = ρ′ = ρp̃.

The MMD observable O(σ)
MMD can be rewritten in Pauli basis using |x〉〈x| =

⊗n
i=1 |xi〉〈xi| =

⊗n
i=1

1
2 (1i + (−1)xiZi)

for the first n qubits and |y〉〈y| = ⊗n
i=1 |yi〉〈yi| =

⊗n
i=1

1
2 (1n+i + (−1)yiZn+i) for the last n qubits, leading to

O
(σ)
MMD =

∑
x,y

n⊗
i=1

[(
1i + (−1)xiZi

2

)
⊗
(

1n+i + (−1)yiZn+i

2

)
exp

(
− (xi − yi)2

2σ

)]
(C6)

=

n⊗
i=1

∑
xi,yi

[(
1i + (−1)xiZi

2

)
⊗
(

1n+i + (−1)yiZn+i

2

)
exp

(
− (xi − yi)2

2σ

)]
(C7)

=

n⊗
i=1

[(1− pσ)1i ⊗ 1n+i + pσZi ⊗ Zn+i] (C8)

=
∑
A⊆N

(1− pσ)n−|A|p|A|σ
⊗
i∈A

(Zi ⊗ Zn+i) (C9)

=

n∑
l=0

(
n

l

)
(1− pσ)n−lplσD2l , (C10)
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where we denote

pσ = (1− e−1/(2σ))/2 , (C11)

ranging between 0 and 1/2. The second equality is obtained using
∑
x,y

⊗n
i=1 h(xi, yi) =

⊗n
i=1

∑
xi,yi

h(xi, yi) and the
third one by explicitly summing over the xi and yi, each of which has two possible values of 0 and 1. To obtain the fourth
inequality we expand the tensor product out explicitly and introduce the notation A to denote the set of all possible
subsets of the indices 1, ..., n. That is,

A ⊆ N = {1, 2, ..., n} . (C12)

For example for n = 3, we have

A ∈ {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} . (C13)

In the last step, we denote

D2l =
1(
n
l

) ∑
A⊆N
|A|=l

⊗
i∈A

(Zi ⊗ Zn+i) , (C14)

which is a normalized sum of Pauli strings, each of which contains Pauli-Z operators of length 2l, i.e., 2l-body interactions.
Interestingly, pσ can be seen as the probability of assigning a pair of single-qubit Pauli-Z operators to a Pauli string.

As a consequence, the coefficient wσ(l) follows a binomial distribution,

wσ(l) =

(
n

l

)
(1− pσ)n−lplσ , (C15)

and can be interpreted as the probability of having D2l i.e., all possible Pauli-strings with 2l Pauli-Z operators. By
adopting this Monte Carlo sampling perspective, the MMD observable O(σ)

MMD can be constructed as a sampling average
where the operator D2l is sampled with the probability wσ(l). This allows us to analyze the dominant terms in O(σ)

MMD by
using standard properties of the binomial distribution. For example, the largest wσ(l) (i.e. the mode of the distribution)
occurs for

(n+ 1)pσ − 1 6 lmax = arg max(wσ(l)) 6 (n+ 1)pσ . (C16)

We note that wσ(l) is monotonically increasing for l < lmax and is monotonically decreasing for l > lmax. The average
(i.e. mean) bodyness of the MMD observable is given by

El∼wσ(l)[2l] = 2npσ , (C17)

and its variance is

Varl∼wσ(l)[2l] = 4npσ(1− pσ) . (C18)

We are now ready to investigate how O
(σ)
MMD depends on σ.

(i) For a constant bandwidth σ ∈ O(1): We have the following proposition.

Proposition 2 (MMD is global with a constant bandwidth). For σ ∈ O(1), the average bodyness of the MMD operator
containing Pauli terms with weight wσ(l) is

El∼wσ(l)[2l] ∈ Θ(n) . (C19)

Similarly, the variance in the bodyness is given by

Varl∼wσ(l)[2l] ∈ Θ(n) . (C20)
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Proof. By considering that pσ, (1 − pσ) ∈ O(1) for σ ∈ O(1) in conjunction with Eqs. (C17) and (C18), we have the
scaling of the average bodyness and its variance as claimed.

Together, this implies that, on average, we are likely to sample D2l with l ∈ O(n). Now, we show that the contribution
from low-body terms is negligible in this regime. Consider the sum of probabilities up to k bodies (such that k < lmax)

k∑
l=0

wσ(l) =

k∑
l=0

(
n

l

)
(1− pσ)n−lplσ (C21)

6 (k + 1)

(
n

k

)
(1− pσ)n−kpkσ (C22)

6 (k + 1)
(ne
k

)k
(1− pσ)n−kpkσ , (C23)

where, in the first inequality we take the maximum value of the sum as each term in the sum is monotonically increasing
before lmax ∈ O(n), the second inequality is due to

(
n
k

)
6
(
ne
k

)k. It is straight forward to see that, for k ∈ O(1),

k∑
l=0

wσ(l) ∈ O(poly(n)/bn) , (C24)

for some b > 0. Altogether, for σ ∈ O(1), the MMD observable is global and the contribution from low-body interactions
is exponentially suppressed in the number of qubits.

(ii) For a linearly-scaled bandwidth σ ∈ Θ(n): The situation here is opposite to what we have in the case (i). First we
note that

p(σ) =
1−

(
1− 1

2σ +O
(

1
σ2

))
2

(C25)

=
1

4σ
+O

(
1

σ2

)
(C26)

∈O
(

1

n

)
(C27)

with σ ∈ Θ(n). Thus in this limit the average and variance of the bodyness of the MMD operator are given by

El∼wσ(l)[2l] ∈ O(1) (C28)
Varl∼wσ(l)[2l] ∈ O(1) . (C29)

Intuitively, this implies the MMD observable is largely composed of low-body contributions in this bandwidth regime.
As a consequence, when computing the MMD loss, the contribution from global terms are negligible. This notion is
formalized in Proposition 3 in the main text, which is proven below.

Proposition 3 (MMD consists largely of low-body terms for σ ∈ Θ(n)). Let L̃(σ,k)
MMD(θ) be a truncated MMD loss with a

truncated operator Õ(σ,k)
MMD that contains up to the 2k-body interactions in O(σ)

MMD,

Õ
(σ,k)
MMD :=

k∑
l=0

wσ(l)D2l , (C30)

where wσ(l) are Bernoulli-distributed weights defined in Eq. (31). For σ ∈ Θ(n), the difference between the exact and
local approximation of the loss is bounded as

|L(σ)
MMD(θ)− L̃(σ,k)

MMD(θ)| 6 ε(k) , (C31)
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with

ε(k) ∈ O
(
n(c/k)k

)
, (C32)

for some positive constant c.

Proof. Let ρθ = |ψ(θ)〉〈ψ(θ)| be the quantum state of our QCBM and ρp̃ with p̃(x) = Tr[ρp̃|x〉〈x|] be the quantum
associated with the training data. We then have

|L(σ)
MMD(θ)− L̃(σ,k)

MMD(θ)| =
∣∣∣Tr
[(
O

(σ)
MMD − Õ

(σ,k)
MMD

)
(ρθ ⊗ ρθ)

]
− 2 Tr

[(
O

(σ)
MMD − Õ

(σ,k)
MMD

)
(ρθ ⊗ ρp̃)

]
+ Tr

[(
O

(σ)
MMD − Õ

(σ,k)
MMD

)
(ρp̃ ⊗ ρp̃)

]∣∣∣ (C33)

6
∣∣∣Tr
[(
O

(σ)
MMD − Õ

(σ,k)
MMD

)
(ρθ ⊗ ρθ)

]∣∣∣+ 2
∣∣∣Tr
[(
O

(σ)
MMD − Õ

(σ,k)
MMD

)
(ρθ ⊗ ρp̃)

]∣∣∣
+
∣∣∣Tr
[(
O

(σ)
MMD − Õ

(σ,k)
MMD

)
(ρp̃ ⊗ ρp̃)

]∣∣∣ (C34)

6
∥∥∥O(σ)

MMD − Õ
(σ,k)
MMD

∥∥∥
∞
‖ρθ ⊗ ρθ‖1 + 2

∥∥∥O(σ)
MMD − Õ

(σ,k)
MMD

∥∥∥
∞
‖ρθ ⊗ ρp̃‖1

+
∥∥∥O(σ)

MMD − Õ
(σ,k)
MMD

∥∥∥
∞
‖ρp̃ ⊗ ρp̃‖1 (C35)

=4
∥∥∥O(σ)

MMD − Õ
(σ,k)
MMD

∥∥∥
∞

(C36)

=4

∥∥∥∥∥
n∑

l=k+1

wσ(l)D2l

∥∥∥∥∥
∞

(C37)

64

n∑
l=k+1

(
n

l

)
(1− pσ)n−lplσ (C38)

64

n∑
l=k+1

(
n

l

)(
1− e−1/2σ

2

)l
(C39)

64

n∑
l=k+1

( ne
4lσ

)l
, (C40)

where the first inequality is due to the triangle inequality, the second inequality is due to Hölder’s inequality, the second
equality is that the 1-norm of the quantum state is 1 (density operators have trace 1), the third inequality uses triangle
inequality and the fact that the infinity norm of Pauli operators is 1, the fourth inequality is from 1− pσ 6 1, and in the
last inequality we use e−x > 1− x together with

(
n
l

)
6
(
ne
l

)l.
To further upper bound the truncation error consider f(x) =

(
ne

4σx

)x for x > 0. We notice that f ′(x) =

f(x)
[
ln
(
ne

4σx

)
− 1
]
which leads to the maximum of f(x) at x∗ = n/(4σ). This leads to

n∑
l=k+1

( ne
4σl

)l
6 (n− k)

( ne

4σk∗

)k∗
, (C41)

where k∗ = max(k, n/4σ). Finally, if we assume that σ ∈ Θ(1) and if k > n/(4σ), then we obtain

ε(k) ∈ O
(
n
( c
k

)k)
(C42)

where c = ne
4σ ∈ O(1). This completes the proof.
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2. MMD variance for a tensor product ansatz

Here we analyse the scaling of the MMD loss variance for a tensor product ansatz. In particular, we derive Theorem 2
and provide further discussion.

The variance of the MMD can be computed as

Varθ[LMMD(θ)] =Varθ

 ∑
x,y∈X

qθ(x)qθ(y)K(x,y)− 2
∑
x,y∈X

qθ(x)p(y)K(x,y) +
∑
x,y∈X

p(x)p(y)K(x,y)

 (C43)

=Varθ[Kq,q(θ)] + 4Varθ[Kp,q(θ)]− 4Covθ[Kq,q(θ),Kp,q(θ)] , (C44)

where we have used Var[X + Y ] = Var[X] + Var[Y ] + 2Cov[X,Y ] and Var[X + c] = Var[X] for any random variables
X,Y and some constant c. We also introduce the shorthand notation of the first and second terms in the MMD loss as

Kq,q(θ) =
∑
x,y∈X

qθ(x)qθ(y)K(x,y) , (C45)

and

Kp,q(θ) =
∑
x,y∈X

qθ(x)p(y)K(x,y) . (C46)

Throughout this sub-section, we consider the QCBM that is comprised of the tensor product ansatz which is of the
form

U(θ) =

n⊗
i=1

Ui(θi) , (C47)

with Ui(θi) being a single-qubit random unitary acting on qubit i such that its ensemble of over θi i.e., {Ui(θi)}θi forms
the single-qubit Haar random ensemble. The model probability of measuring a bitstring x can be expressed as

qθ(x) = Tr
[
U(θ)|0〉〈0|U†(θ)|x〉〈x|

]
(C48)

=

n∏
i=1

Tr
[
Ui(θi)|0i〉〈0i|U†i (θi)|xi〉〈xi|

]
. (C49)

where we use (A⊗B)(C ⊗D) = AC ⊗BD and Tr[A⊗B] = Tr[A] Tr[B].

a. Preliminaries: Haar integration and Pauli operators

Crucially, as the rotation angles θi are independent and {Ui(θi)}θi is a single-qubit Haar random ensemble, averaging
over θi is equivalent to averaging over the single-qubit Haar ensemble. Hence, we can invoke Haar integration to perform
an average over randomly initialized parameters θi on each individual qubit. As an example, consider the average of the
probability qθ(x) over single qubit Haar random product states

Eθ[qθ(x)] =

∫
dU(θ) Tr

[
U(θ)|0〉〈0|U†(θ)|x〉〈x|

]
(C50)

=

n∏
i=1

∫
dUi(θi) Tr

[
Ui(θi)|0i〉〈0i|U†i (θi)|xi〉〈xi|

]
(C51)

=

n∏
i=1

Tr[|0i〉〈0i|] Tr[|xi〉〈xi|]
2

(C52)

=
1

2n
, (C53)
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where we used the Haar integral formula
∫
dV VMV † = Tr[M ]/dV (with dV as dimension of V ). The Haar integration

for the higher moments can be done in a similar manner. Here, we recall some useful single-qubit Haar integration
formulae (see, for example, Eq. (2.26) in Ref. [109])∫

dV V ⊗1|0〉〈0|⊗1V †⊗1 =
1

2
1 (C54)∫

dV V ⊗2|0〉〈0|⊗2V †⊗2 =
1

6
(1⊗ 1 + S12) (C55)∫

dV V ⊗3|0〉〈0|⊗3V †⊗3 =
1

24
(1⊗ 1⊗ 1 + S12 + S13 + S23 + S23S12 + S23S13) , (C56)∫

dV V ⊗4|0〉〈0|⊗4V †⊗4 =
1

120
(1⊗ 1⊗ 1⊗ 1 + S12 + S13 + S14 + S23 + S24 + S34 + S34S12 + S24S13 + S23S14

+ S23S12 + S24S12 + S23S13 + S34S13 + S24S14 + S34S23 + S34S24 + S34S41

+ S34S23S12 + S34S24S12 + S24S23S13 + S24S34S13 + S23S34S14 + S23S24S14) (C57)

where Slk is the swap operator between systems l and k.
In addition, we will use the following lemma for the variance of an arbitrary operator O in the Pauli basis over random

product states.

Lemma 1. Consider an arbitrary observable O decomposed into the Pauli basis

O =
∑
σ∈pn

λσσ, (C58)

where the weights λσ are real constants and pn = {1, X, Y, Z}⊗n is the Pauli ensemble on n qubits. The variance of O
over single qubit Haar random product states is given by

Var|ψ〉∼Haar⊗n1
[O] =

∑
σ∈pn\1⊗n

λ2
σ

3|s(σ)| , (C59)

where s(σ) is the subset of qubits on which σ acts non trivially and |s(σ)| is a cardinality of s(σ).

Proof. We consider the arbitrary observable O which can be deomposed into the Pauli basis as

O =
∑
σ∈pn

λσσ, (C60)

where the weights λσ are real constants and pn = {1, X, Y, Z}⊗n is the Pauli ensemble on n qubits. We denote s(σ) as
a support of σ which is a subset of qubits that σ acts non-trivially on and |s(σ)| as a cardinality of s(σ)5.

The variance of O over single qubit Haar random product states |ψ〉 ∼ Haar⊗n1 is of the form

Var|ψ〉∼Haar⊗n1
[O] = E|ψ〉∼Haar⊗n1

[
| 〈ψ|O |ψ〉 |2

]
−
(

E|ψ〉∼Haar⊗n1
[| 〈ψ|O |ψ〉 |]

)2

(C61)

= 〈O2〉|ψ〉∼Haar⊗n1
− 〈O〉2|ψ〉∼Haar⊗n1

. (C62)

5 As an example, for σ = X ⊗ 1⊗ 1⊗ Z ⊗ Y , we have s(σ) = {1, 4, 5} with |s(σ)| = 3.
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First, we consider the average of O over single qubit Haar random product states.

〈O〉|ψ〉∼Haar⊗n1
=
∑
σ∈pn

λσ〈σ〉|ψ〉∼Haar⊗n1
(C63)

=
∑
σ∈pn

λσ

n∏
i=1

〈σi〉|ψi〉∼Haar1 (C64)

=
∑
σ∈pn

λσ

n∏
i=1

δ(σi = 1) (C65)

=λ1⊗n , (C66)

where, in the third equality, we use the Haar integration formula in Eq. (C54) together with the fact that all single-qubit
Pauli matrices are traceless, and we denote δ(σi = 1) = 1 if σi = 1 (otherwise, δ(σi = 1) = 0 ).

Now, we consider the second-moment of O over a random product state. To evaluate this we follow the proof of Lemma
B.3 in Appendix B in Ref. [72] to integrate over the random product states but replace the unitary Ũ†WÛ in Ref. [72]
with an observable O. This directly leads to

〈O2〉 =
1

6n

∑
A⊆N

Tr
[
O2
A

]
, (C67)

where OA = TrĀ[O] is the partial trace of O over all qubits except those in A ⊆ N = {1, 2, ..., n}. We recall that A is
also defined in Eq. (C12).

Consider a given subset of qubits A. We first notice that, for a given σ =
⊗n

i=1 σi, we have the partial trace of the
Pauli string over A as

σA = TrĀ

[
n⊗
i=1

σi

]
(C68)

=

[∏
i/∈A

Tr[σi]

]
·
[⊗
i∈A

σi

]
(C69)

=2n−|A|δ(s(σ) ⊆ A)
⊗
i∈A

σi , (C70)

where we denote δ(s(σ) ⊆ A) = 1 if s(σ) ⊆ A and δ(s(σ) ⊆ A) = 0 if s(σ) * A, which is a direct consequence of the Pauli
matrices being traceless i.e., Tr[σi] 6= 0 only if σi = 1. Importantly, σA 6= 0 only if the part that σ acts non-trivially is a
subset of A.

Now, we consider

Tr
[
O2
A

]
= TrA [TrĀ[O] · TrĀ[O]] (C71)

= Tr

(∑
σ∈pn

λσ2n−|A|δ(s(σ) ⊆ A)
⊗
i∈A

σi

) ∑
σ′∈pn

λσ′2
n−|A|δ(s(σ′) ⊆ A)

⊗
i∈A

σ′i

 (C72)

=
∑

σ,σ′∈pn

λσλσ′2
2(n−|A|)δ(s(σ) ⊆ A)δ(s(σ′) ⊆ A)

(∏
i∈A

Tr[σiσ
′
i]

)
(C73)

=
∑

σ,σ′∈pn

λσλσ′2
2(n−|A|)δ(s(σ) ⊆ A)δ(s(σ′) ⊆ A)

(
2|A|

∏
i∈A

δ(σi = σ′i)

)
(C74)

=
∑
σ∈pn

λ2
σ22n−|A|δ(s(σ) ⊆ A) , (C75)
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where the third equality is due to Tr
[(⊗

i∈A σi
) (⊗

i∈A σ
′
i

)]
=
∏
i∈A Tr[σiσ

′
i], and the fourth equality is due to Tr[σiσ

′
i] =

2δ(σi = σ′i) with δ(σi = σ′i) = 1 if σi = σ′i and δ(σi = σ′i) = 0, otherwise. In the last equality, we notice that the condition
that σ acts non-trivially only on A (i.e., δ(s(σ) ∈ A) together with the reduced Pauli strings on A are the same for σ and
σ′ (i.e.,

∏
i∈A δ(σi = σ′i) ) implies that σ = σ′ for the term to be non-zero, reducing the double sum to the single sum.

We are ready to continue with

〈O2〉 =
1

6n

∑
A⊆N

∑
σ∈pn

λ2
σ22n−|A|δ(s(σ) ⊆ A) (C76)

=

(
2

3

)n ∑
σ∈pn

λ2
σ

∑
A⊆N

2−|A|δ(s(σ) ⊆ A) (C77)

=

(
2

3

)n ∑
σ∈pn

λ2
σ

∑
A′⊆N\s(σ)

2−|s(σ)|−|A′| (C78)

=

(
2

3

)n ∑
σ∈pn

λ2
σ2−|s(σ)|

n−|s(σ)|∑
|A′|=0

(
n− |s(σ)|
|A′|

)
2−|A

′| (C79)

=

(
2

3

)n ∑
σ∈pn

λ2
σ2−|s(σ)|

(
3

2

)n−|s(σ)|

(C80)

=
∑
σ∈pn

λ2
σ

3|s(σ)| , (C81)

where the third equality is due to the fact that the terms do not vanish only when s(σ) ∈ A and therefore we only have
to sum over A that contain s(σ). The latter is equivalent to summing A′ where A = A′ ∪ s(σ) over N\s(σ). In fourth
equality, we replace the sum over A′ by a sum over |A′| and counted the number of ensembles of size |A′| in N\s(σ)
(which is of size n− |s(σ)|). In the fifth equality, we recognised a binomial sum.

Lastly, we have the variance of the form

Var|ψ〉∼Haar⊗n1
[O] =

∑
σ∈pn

λ2
σ

3|s(σ)| − (λ1⊗n)
2 (C82)

=
∑

σ∈pn\1⊗n

λ2
σ

3|s(σ)| , (C83)

where the sum in the last line excludes the identity term. This completes the proof of the lemma.

b. Generic form of the MMD variance for a tensor product ansatz

We now give a generic expression of the variance of the MMD loss for an arbitrary bandwidth, which is stated in the
following proposition

Supplemental Proposition 2. Consider the MMD loss function L(σ)
MMD(θ) as defined in Eq. (13), which uses the

classical Gaussian kernel as defined in Eq. (12) with the bandwidth σ, and a quantum generative model that is comprised
of a tensor-product ansatz U =

⊗n
i Ui(θi) with {Ui(θi)}θi a single-qubit Haar random ensemble for all i. Given a training

dataset P̃ , we have that the variance of the MMD loss over parameters θ is

Varθ[L(σ)
MMD(θ)] = Bσ + 4Cσ(P̃ ) , (C84)
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with

Bσ =

[
7 + 6e−1/2σ + 2e−1/σ

15

]n
−
[

4 + 4e−1/2σ + e−1/σ

9

]n
, (C85)

and

Cσ(P̃ ) =
∑
A⊆N
A 6={}

(1− pσ)2(n−|A|)
(
p2
σ

3

)|A|
z2
A(P̃ ) , (C86)

where pσ = (1− e− 1
2σ )/2, N = {1, 2, ..., n}, zA(P̃ ) = Tr

[
(
⊗

i∈A Zi)ρp̃
]

=
∑
y p̃(y)(−1)

∑
i∈A yi with ρp̃ being the quantum

state corresponding to the training data such that p̃(x) = Tr[ρp̃|x〉〈x|]. The sum in Eq. (C86) is over all possible subsets
of N excluding the empty set {}.

We remark that Bσ and Cσ(P̃ ) are the variances of the first term Kq,q(θ) and the second term Kp,q(θ) in the MMD,
respectively, while we found the covariance term to vanish. The dependence on the training data is encoded in zA(P̃ )
which ranges between −1 and 1. Lastly, the exact formula of the MMD variance has been found to be consistent with
the numerical simulation up to n = 1000 in Fig. 5.

Proof. There are three main steps in our proof. (i) computing the variance of the first term Kq,q(θ), (ii) computing the
variance of the second term Kp,q(θ) and, lastly, (iii) showing that the covariance between the two terms is zero.

(i) Computing the variance of Kq,q(θ):

Varθ[Kq,q(θ)] =Eθ[K2
q,q(θ)]− (Eθ[Kq,q(θ)])2 (C87)

=Eθ

(∑
x,y

qθ(x)qθ(y)K(x,y)

)2
−(Eθ

[∑
x,y

qθ(x)qθ(y)K(x,y)

])2

(C88)

=
∑

x,y,x′,y′

Eθ[qθ(x)qθ(y)qθ(x′)qθ(y′)]K(x,y)K(x′,y′)−
(∑
x,y

Eθ[qθ(x)qθ(y)]K(x,y)

)2

. (C89)

We now can express each individual model probability as in Eq. (C49) and then average over the parameters θ. This
requires us to perform Haar integration for the first and second terms in Eq. (C89), respectively.

First, consider∑
x,y

Eθ[qθ(x)qθ(y)]K(x,y) =
∑
x,y

n∏
i=1

∫
dUi(θi) Tr

[
(Ui(θi))

⊗2|0i〉〈0i|⊗2(U†i (θi))
⊗2(|xi〉〈xi| ⊗ |yi〉〈yi|)

]
K(x,y) (C90)

=
∑
x,y

n∏
i=1

Tr

[(∫
dUi(θi)(Ui(θi))

⊗2|0i〉〈0i|⊗2(U†i (θi))
⊗2

)
(|xi〉〈xi| ⊗ |yi〉〈yi|)

]
K(x,y)

(C91)

=
∑
x,y

n∏
i=1

Tr

[(
1⊗ 1 + S12

6

)
(|xi〉〈xi| ⊗ |yi〉〈yi|)

]
e−

(xi−yi)
2

2σ (C92)

=
∑
x,y

n∏
i=1

(
1 + δxi,yi

6

)
e−

(xi−yi)
2

2σ (C93)

=
∑
x

n∏
i=1

[(
1 + δxi,0

6

)
e−

(xi)
2

2σ +

(
1 + δxi,1

6

)
e−

(xi−1)2

2σ

]
(C94)

=

(
2 + e−1/2σ

3

)n
, (C95)
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where, in the third equality, we use Eq. (C55), and, in the fifth equality as well as in the last equality, we use the identity∑
x

∏n
i=1 hi(xi) =

∏n
i=1(hi(0) + hi(1)).

Similarly, the first term in Eq. (C89) can be computed via Haar integration using Eq. (C57) and repeatedly applying
the identity

∑
x

∏n
i=1 hi(xi) =

∏n
i=1(hi(0) + hi(1)), leading to∑

x,y,x′,y′

Eθ[qθ(x)qθ(y)qθ(x′)qθ(y′)]K(x,y)K(x′,y′) =

(
7 + 6e−1/2σ + 2e−1/σ

15

)n
. (C96)

Altogether, we have the variance of the first MMD term as

Varθ[Kq,q(θ)] =

(
7 + 6e−1/2σ + 2e−1/σ

15

)n
−
(

4 + 4e−1/2σ + e−1/σ

9

)n
. (C97)

(ii) Computing the variance of Kp,q(θ): There are two alternative ways of doing this, leading to two equivalent ex-
pressions of the variance of Kp,q(θ). First is the same approach used in (i). Alternatively, we can interpret the mid-
dle term as an expectation value of an observable O(σ)

p̃ (P̃ ) =
∑
x λx(P̃ )|x〉〈x| with λx(P̃ ) =

∑
y p(y)K(x,y) and

then use Lemma 1. That is, Kp,q(θ) = Tr
[
U(θ)|0〉〈0|U†(θ)O

(σ)
p̃ (P̃ )

]
. Transforming O

(σ)
p̃ into the Pauli basis with

|x〉〈x| = ⊗n
i=1 |xi〉〈xi| =

⊗n
i=1

1
2 (1i + (−1)xiZi) leads to

O
(σ)
p̃ =

∑
A⊆N

(1− pσ)n−|A|p|A|σ zA(P̃ )
⊗
i∈A

Zi , (C98)

where N = {1, 2, ..., n}, pσ = (1− e− 1
2σ )/2 and we denote

zA(P̃ ) = Tr

[(⊗
i∈A

Zi

)
ρp̃

]
(C99)

=
∑
y

p̃(y)(−1)
∑
i∈A yi , (C100)

where ρp̃ is the quantum state associated with the training data with p̃(x) = Tr[ρp̃|x〉〈x|] 6.
By using Lemma 1, the variance of the middle term with O(σ)

p̃ expressed in the Pauli basis is of the form

Varθ[Kp,q.(θ)] =
∑
A⊆N
A 6={}

(1− pσ)2(n−|A|)
(
p2
σ

3

)|A|
z2
A(P̃ ) . (C101)

Notice that the sum now excludes the empty set {}. We can see that zA(P̃ ) encodes information about the target
distribution.

(iii) Computing the covariance between Kp,p(θ) and Kp,q(θ): By direct computation as in (i), we have

Covθ[Kq,q(θ),Kp,q(θ)] = Eθ[Kq,q(θ)Kp,q(θ)]− Eθ[Kq,q(θ)]Eθ[Kp,q(θ)] (C102)

=
∑

x,y,x′,y′

p(y′)

(
Eθ[qθ(x)qθ(y)qθ(y′)]− Eθ[qθ(x)qθ(y)]Eθ[qθ(x′)]

)
K(x,y)K(x′,y′) (C103)

= 0 , (C104)

6 Equivalently, one can get to this reduced MMD observable by tracing out half of the qubits that ρp̃ acts on in O(σ)
MMD in Eq. (C10). That

is, O(σ)
p̃ = Tr1

[
(1⊗ ρp̃)O

(σ)
MMD

]
.
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where the last equality follows from

∑
x,y

(
Eθ[qθ(x)qθ(y)qθ(y′)]− Eθ[qθ(x)qθ(y)]Eθ[qθ(x′)]

)
K(x,y) = 0 (C105)

which holds for any x′ and y′ from Eq. (C50), Eq. (C55) and Eq. (C56).

By substituting Eq. (C97), Eq. (C101) and Eq. (C104) back into the MMD variance expression in Eq. (C44), the proof
is completed.

c. Variance scaling and trainability of MMD

We now analyze how the scaling of the variance depends on the bandwidth σ. To demonstrate the presence of loss
concentration, it is sufficient to show that the variance of the whole MMD loss has an exponentially small upper bound.
We show that this happens when the bandwidth is constant and independent of the number of qubits, i.e., σ ∈ O(1). On
the other hand, to establish trainability it is crucial to accurately measure all individual terms in the MMD loss. More
precisely, we require both first and second MMD terms to have at least a polynomially large variance. We argue that
this can be achieved by using bandwidth that scales as σ ∈ Θ(n).

A formal version of Theorem 2 is stated below.

Theorem 2 (Product ansatz trainability of MMD, formal). Consider the MMD loss function L(σ)
MMD(θ) as defined in

Eq. (11), which uses the classical Gaussian kernel as defined in Eq. (12) with the bandwidth σ > 0, and a quantum circuit
generative model that is comprised of a tensor-product ansatz U =

⊗n
i Ui(θi) with {Ui(θi)}θi being single-qubit (Haar)

random unitaries. Given a training dataset P̃ , the asymptotic scaling of the variance of the MMD loss depends on the
value of σ.

For σ ∈ O(1), we have

Varθ[L(σ)
MMD(θ)] ∈ O(1/bn) , (C106)

with some b > 1.

On the other hand, according to Supplemental Proposition 2 and for σ ∈ Θ(n), we have

Varθ[L(σ)
MMD(θ)] = Bσ + 4Cσ(P̃ ) , (C107)

where the variance of the first term Bσ is lower-bounded as

Bσ ∈ Ω(1/n) , (C108)

as well as, the variance of the second term Cσ(P̃ ) is lower-bounded as

Cσ(P̃ ) ∈ Ω(1/poly(n)) , (C109)

provided that ∑
A⊆N

A6={},|A|6k

z2
A(P̃ ) ∈ Ω(1/ poly(n)) , (C110)

with k ∈ O(1), N = {1, ..., n} and zA(P̃ ) =
∑
y p̃(y)(−1)

∑
i∈A yi which encodes the information about the training data.
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Proof. We consider the scaling of the MMD variance in Eq. (C84) for two scenarios of the bandwidth values.

(i) For σ ∈ O(1): We show that both Bσ and Cσ(P̃ ) in the MMD variance are exponentially small. First, from
Eq. (C85) we know that

Bσ 6

[
7 + 6e−1/2σ + 2e−1/σ

15

]n
. (C111)

If σ ∈ O(1), then B̃σ is exponentially decreasing as e−1/2σ, e−1/σ ∈ O(1).
For the second MMD term, Eq. (C86), we upper bound as

Cσ(P̃ ) 6
∑
A⊆N
A 6={}

(1− pσ)2(n−|A|)
(
p2
σ

3

)|A|
(C112)

=

n∑
|A|=1

(
n

|A|

)
(1− pσ)2(n−|A|)

(
p2
σ

3

)|A|
(C113)

6
n∑

|A|=0

(
n

|A|

)
(1− pσ)2(n−|A|)

(
p2
σ

3

)|A|
(C114)

=

(
(1− pσ)2 +

p2
σ

3

)n
(C115)

=

[
1 + e−1/2σ + e−1/σ

3

]n
, (C116)

where the first inequality is due to z2
A(P̃ ) 6 1 , the first equality leverages that the expression only depends on the

support of A rather than A itself, the final inequality is due to including the empty set in the sum (i.e., |A| = 0), and
in the second equality we use the binomial sum formula. In the final line we use the definition of pσ from Eq. (C11).
Similarly to the first term, if σ ∈ O(1), the upper bound decays exponentially with n.

Therefore, when σ ∈ O(1), the variance of the MMD loss scales as

Varθ[LMMD(θ)] ∈ O(1/bn) , (C117)

for some b > 0.

(ii) For σ ∈ Θ(n): Consider the variance of the first MMD term

Bσ =

[
7 + 6e−1/2σ + 2e−1/σ

15

]n
−
[

4 + 4e−1/2σ + e−1/σ

9

]n
(C118)

>

[
7 + 6

(
1− 1

2σ + 1
8σ2 − 1

48σ3

)
+ 2

(
1− 1

σ + 1
2σ2 − 1

6σ3

)
15

]n
−
[

4 + 4
(
1− 1

2σ + 1
8σ2

)
+
(
1− 1

σ + 1
2σ2

)
9

]n
(C119)

=

[
1− 1

3σ
+

7

60σ2
− 11

360σ3

]n
−
[
1− 1

3σ
+

1

9σ2

]n
(C120)

=

(
1− 1

3σ

)n [[
1 +

7
60σ2 − 11

360σ3

1− 1
3σ

]n
−
[
1 +

1
9σ2

1− 1
3σ

]n]
(C121)

>

(
1− 1

3σ

)n−1 ( n

180σ2

)(
1− 11

2σ

)
(C122)

=
( n

180σ2

)(
1− 11

2σ

)[(
1− 1

3σ

)3σ
](n−1)/3σ

, (C123)
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where in the first inequality we use 1 − x + x2/2 − x3/6 6 e−x 6 1 − x + x2/2, the second inequality is due to
(1 + a)n − (1 + b)n > n(a− b) for positive a, b and a > b. This is satisfied when σ > 5.5, which is the case for sufficiently
large n. We note that (n− 1)/3σ ∈ O(1). To proceed further, we consider the following lemma.

Lemma 2. The lower bound of f(x) = (1− 1/x)x with 1 < |x| is given by

f(x) >
1

e

1−
∞∑
j=1

1

(j + 1)xj

 . (C124)

Proof. We consider

f(x) = exp(x ln(1− 1/x)) (C125)

= exp

x
 ∞∑
j=1

− 1

jxj

 (C126)

=
1

e
· exp

 ∞∑
j=1

− 1

(j + 1)xj

 (C127)

>
1

e

1−
∞∑
j=1

1

(j + 1)xj

 , (C128)

where the second equality is due to the Taylor expansion of ln(1− 1/x) which converges for 1 < |x|, the inequality is by
using e−y > 1− y.

By using Lemma 2, we have the following lower bound

Bσ >
( n

180σ2

)(
1− 11

2σ

)1

e

1−
∞∑
j=1

1

(j + 1)(3σ)j

(n−1)/3σ

, (C129)

which implies that Bσ ∈ Ω(1/n) for σ ∈ Ω(n)
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Similarly, for the second term, we have

Cσ(P̃ ) =
∑
A⊆N
;A 6={}

(1− pσ)2(n−|A|)
(
p2
σ

3

)|A|
z2
A(P̃ ) (C130)

=

[
1 + 2e−1/2σ + e−1/σ

4

]n ∑
A⊆N
;A6={}

(
tanh2(1/4σ)

3

)|A|
z2
A(P̃ ) (C131)

>

[
1 + 2

(
1− 1

2σ

)
+
(
1− 1

σ

)
4

]n ∑
A⊆N
;A 6={}

(
1

16σ2

(
1− 1

24σ2

)
3

)|A|
z2
A(P̃ ) (C132)

>

[(
1− 1

2σ

)2σ
] n

2σ (
1

48σ2

(
1− 1

24σ2

))k ∑
A⊆N

;A6={},|A|6k

z2
A(P̃ ) (C133)

>

1

e

1−
∞∑
j=1

1

(j + 1)(2σ)j

 n
2σ (

1

48σ2

(
1− 1

24σ2

))k ∑
A⊆N

;A6={},|A|6k

z2
A(P̃ ) , (C134)

where tanh(1/4σ) = pσ/(1 − pσ), the first inequality is due to e−x > 1 − x and tanh(x) > x − x3/3 (for positive x),
and in the second inequality we truncate the sum at |A| = k and taking |A| = k for all terms within the truncated sum.
Finally, in the last inequality, we note that n

2σ ∈ O(1) and use Lemma 2.
Altogether, taking k ∈ O(1) and assuming ∑

A⊆N
;A 6={},|A|6k

z2
A(P̃ ) ∈ Ω(1/ poly(n)) , (C135)

the MMD variance is lower bounded as

Varθ[LMMD(θ)] ∈ Ω(1/n) , (C136)

with the desired scaling of Bσ and Cσ(P̃ ). This completes the proof of the theorem.

We showed that the variance of the MMD cross terms Cσ(P̃ ) decays at most polynomially in n provided that the sum
of z2

A(P̃ ) terms for |A| ∈ O(1) and A 6= { } is at least polynomially small in n, i.e., not exponentially small. Here, we
comment on this assumption.

First, we recall the definition of zA(P̃ ) from Eq. (C99)

zA(P̃ ) = Tr

[(⊗
i∈A

Zi

)
ρp̃

]
(C137)

=
∑
y

p̃(y)(−1)
∑
i∈A yi , (C138)

with ρp̃ being the quantum state associated with the training data distribution p̃(x) = Tr[ρp̃|x〉〈x|]. Importantly, zA(P̃ )
encodes the correlation of training data on the subset A of the bitstring (with A defined in Eq. (C12)), which can be
interpreted as an average parity over A. In other words, its purpose is for the model to learn the same expectation on
the operator ZA as the dataset.
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Figure 10. We plot
∑
A⊆N z

2
A(P̃ ) such that |A| 6 k and A 6= {} as a function of n and shows different k values. The datasets

considered here corresponds to the real high energy physics dataset used in Sec. IV. Values of n = 10, 11, ..., 19 and k = 1, 2, 3, 4
are presented. The quantity does not vanish with the increasing number of qubits, satisfying the data-dependence assumption
made in Theorem 2.

The magnitude of
∑
A z

2
A(P̃ ) depends on the provided training dataset, and if the variance of the cross term vanishes

due to the data-dependence, this is because it is required for a faithfulness of the loss function. We note, however, that
we do not expect this to occur in practice because partical datasets are likely exhibit significant correlations, and also
due to the assumption of polynomial dataset sizes, i.e., p̃(x) ∈ Ω(1/ poly(n)) for x ∈ P̃ . To emphasize this point, we
analyzed the dataset from HEP colliders experiments used throughout Section IV. Fig. 10 numerically shows the sum
of the first z2

A(P̃ ) terms for 1 6 |A| 6 k as a function of n and for k = 1, 2, 3 and 4. We see that these terms for the
low-body interactions do not disappear as the number of qubits increases and, in fact, they increase with n instead. This
provides a practical example that the data-dependence assumption used in Theorem 2 is satisfied in practice.

3. Beyond loss gradients - resolving high-order correlations with the MMD

Our results so far (Theorem 2 and Conjecture 1) indicate that picking a single bandwidth σ ∈ Θ(n) maximizes the
expected magnitude of gradients for a randomly initialized QCBM. However, while non-vanishing gradients are necessary,
they are not sufficient to guarantee reliable training performance.

As discussed in the main text and Appendix C 1, the MMD observable can be decomposed into a weighted sum
of Pauli-Z strings ranging from low-body to global interaction terms. For σ ∈ Θ(n), Proposition 3 ensures that the
MMD observable is largely composed of low-body terms, with the contribution from global terms negligible. While this
leads to substantial cost gradients, we will argue that losses composed purely of low-body terms struggle to learn global
properties of the target distribution. In particular, we will argue that an MMD-type loss that is at most 2k bodied cannot
distinguish between two distributions with the same marginals on k-qubits but which differ on higher-order marginals.
In Appendix C 4 we generalise this argument to a broader family of losses for generative modelling.

For a given subset of bits A ⊆ N = {1, 2, ..., n}, denote xA as a part of the bitstring x on that subset A and xĀ as
the rest of the bitstring x. The full bitstring x can be expressed (not in the right bit order) as x = (xA,xĀ). Then, the
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marginal probability of the training distribution on A can be expressed as

p̃(xA) =
∑

xĀ∈{0,1}⊗(n−|A|)

p̃(xA,xĀ) (C139)

= Tr [ρp̃ (|xA〉〈xA| ⊗ 1Ā)] , (C140)

where the sum is over all constellations of the bits that are not in A. In the second line, p̃(xA) is equivalently expressed
as the expectation value of a projector onto a computational basis of the subsystem A with the training quantum state
ρp̃. Similarly, the marginal distribution of the model on A is of the form

qθ(xA) =
∑

xĀ∈{0,1}⊗(n−|A|)

qθ(xA,xĀ) (C141)

= Tr [ρθ (|xA〉〈xA| ⊗ 1Ā)] . (C142)

Physically, we note that, when marginals of two distributions agree up to k-bits, this implies that the diagonal elements
of the reduced density matrices on any subsets of k qubits are also identical. That is, for all A ⊆ N such that |A| 6 k,
if p̃(xA) = qθ(xA), we have

Diag(TrĀ[ρp̃]) = Diag(TrĀ[ρθ]) , (C143)

where Ā is a complementary of A.
In addition, we recall that the truncated version of the MMD observable defined in Eq. (C10) is of the form

Õ
(σ,k)
MMD =

k∑
l=0

(
n

l

)
(1− pσ)n−lplσD2l (C144)

=
∑
A⊆N
|A|6k

(1− pσ)n−|A|p|A|σ
⊗
i∈A

(Zi ⊗ Zn+i) , (C145)

where in the second line the observable is re-written explicitly as the sum over A (with l = |A|). Then, the truncated
version of the MMD loss can be expressed as

L̃(σ,k)
MMD(θ) = Tr

[
Õ

(σ,k)
MMD(ρθ ⊗ ρθ)

]
− 2 Tr

[
Õ

(σ,k)
MMD(ρθ ⊗ ρp̃)

]
+ Tr

[
Õ

(σ,k)
MMD(ρp̃ ⊗ ρp̃)

]
(C146)

= Tr
[
Õ

(σ,k)
MMD(ρθ − ρp̃)⊗2

]
. (C147)

We are now ready to state and prove the following proposition.

Proposition 4 (The truncated MMD loss is not faithful). Consider a distribution qθ(x) that agrees with the training
distribution p̃(x) on all the marginals up to k bits, but disagrees on higher-order marginals. The distribution qθ(x)
minimizes the truncated MMD loss. That is, suppose

qθ(xA) = p̃(xA) , (C148)

for all A ⊆ {1, 2, ..., n} with |A| 6 k, then

L̃(σ,k)
MMD(θ) = 0 . (C149)

Crucially, this is true even if for some B ⊆ {1, 2, ..., n} with |B| > k

qθ(xB) 6= p̃(xB) . (C150)
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Proof. Our proof idea is to express the truncated MMD loss in terms of the marginals up to k bits and show that the
loss is minimized when the marginals up to k bits match. First, we explicitly expand Õ(σ,k)

MMD in the truncated MMD loss
function in Eq. (C147) leading to

L̃(σ,k)
MMD(θ) =

∑
A⊆N
|A|6k

(1− pσ)n−|A|p|A|σ [〈ZA〉θ − 〈ZA〉p̃]2 , (C151)

where we introduce the shorthand notations ZA =
⊗

i∈A Zi, 〈ZA〉θ = Tr[ZAρθ] and 〈ZA〉p̃ = Tr[ZAρp̃]. By expressing
ZA in the computational basis, we have

ZA =
∑
xA

(−1)
∑
i∈A xi |xA〉〈xA| ⊗ 1Ā . (C152)

So, the expectation of ZA can be written as a sum of the marginals probabilities on A with the definition in Eq. (C139)
as follows,

〈ZA〉p̃ =
∑
xA

(−1)
∑
i∈A xi p̃(xA) , (C153)

and

〈ZA〉θ =
∑
xA

(−1)
∑
i∈A xiqθ(xA) . (C154)

Then, we have

L̃(σ,k)
MMD(θ) =

∑
A⊆N
|A|6k

(1− pσ)n−|A|p|A|σ

[∑
xA

(−1)
∑
i∈A xi(p̃(xA)− qθ(xA))

]2

(C155)

=0 , (C156)

which completes the proof. Note that we do not need information of the marginals beyond k bits and therefore this leads
to the unfaithfulness in the sense that higher-order marginals can disagree even with the truncated loss being minimized.

In Proposition 4, we show that if the marginals between the model and training distributions match up to k bits, then
the truncated loss of order k is minimized with the model distribution. We now show that the inverse direction also
holds. That is, minimizing the truncated loss means learning the marginals of the training distribution.

To show this, we consider again the truncated MMD loss in Eq (C151) and notice that the loss is minimized and equals
to 0 if and only if

〈ZA〉θ = 〈ZA〉p̃ , (C157)

for all A ∈ N such that |A| 6 k. Concerning the marginal probabilities, we now decompose the projector |xA〉〈xA| ⊗ 1Ā
in the Pauli basis

|xA〉〈xA| ⊗ 1Ā =
⊗
i∈A

1

2
(1i + (−1)xiZi) (C158)

=
1

2|A|

∑
B⊆A

(−1)
∑
i∈B xiZB , (C159)
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where we expanded the product fully with ZB =
⊗

i∈B Zi, where B are all possible subsets of A. Thus any k bit marginal
can be computed from a sum of the average parities of all subsets up to k bits via

p̃(xA) =
1

2|A|

∑
B⊆A

(−1)
∑
i∈B xi〈ZB〉p̃ . (C160)

It is clear from Eq. (C151) that training on the k-truncated MMD learns all average parities of the target distribution up
to k bits, Eq. (C157), and hence Eq. (C160) implies we also learn all marginals up to and including k bits. Put another
way, the difference between model and training marginal probabilities is given by

p̃(xA)− qθ(xA) =
1

2|A|

∑
B⊆A

(−1)
∑
i∈B xi (〈ZB〉p̃ − 〈ZB〉θ) , (C161)

=0 , (C162)

for all A such that |A| 6 k.

4. Distinguishing marginals using an arbitrary loss

In Appendix C 3, we have shown that a truncated MMD loss operator cannot distinguish between model distributions
that agree with the data distribution up until a certain order of marginals, but disagree beyond. In this section, we
show that this phenomenon can be extended to general generative losses for classical data that can be formulated as
the expectation value of some observable. As a key example, we first consider loss functions L(θ) = Tr[Oρθ] with an
observable in the following form,

O =
∑
x∈X

Dα(x)|x〉〈x| . (C163)

Here, Dα(x) is the eigenvalue of the operator corresponding with the computational basis sample x, which could
additionally be parametrized by α. Notably, the loss for the Generator in a quantum GAN can be expressed in this
form, where Dα(x) is the classification output of the Discriminator.

The truncated version of O in the Pauli basis up to k-body terms can be expressed as

O(k) =
∑
A⊆N
|A|6k

cAZA , (C164)

where cA = 1
2n

∑
xDα(x)(−1)

∑
i∈A xi , and ZA =

⊗
i∈A Zi are Pauli operators acting non-trivially on qubits i in a subset

of qubits A.
Now, we show that the loss assigned by the truncated loss function is the same between that the model state ρθ1

,
which matches the training distribution exactly (i.e., it is the global optimum of the full loss but not necessarily of the
truncated one), and a state ρθ2

, matches the training distribution up to k-bit marginals but disagrees beyond. Both are
characterized by the property

Tr [ρθ1
(|xA〉〈xA| ⊗ 1Ā)] = Tr [ρθ2

(|xA〉〈xA| ⊗ 1Ā)] = p̃(xA) . (C165)

for all A ⊆ N such that |A| 6 k. This implies that the reduced states ρθ1,A = TrĀ[ρθ1
], ρθ2,A = TrĀ[ρθ2

] and
ρp̃,A = TrĀ[ρp̃] have the same diagonal, that is Diag(ρθ1,A) = Diag(ρθ2,A) = Diag(ρp̃,A). Consequently, the expectations
of any diagonal Pauli operator ZA on A are the same,

〈ZA〉θ1
= 〈ZA〉θ2

= 〈ZA〉p̃ . (C166)
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Now consider the difference in the loss between any of these two states i.e., ρ, ρ′ ∈ {ρθ1
, ρθ2

, ρp̃}
d(ρ, ρ′) = L(ρ)− L(ρ′) (C167)

=
∑
A⊆N
|A|6k

cA (TrĀ[ZAρ]− TrĀ[ZAρ
′]) (C168)

= 0 . (C169)

This shows that any loss composed exclusively of low-body terms cannot distinguish between distributions with the
same low-order marginals (but potentially different higher-order marginals). Beyond losses that are natively composed en-
tirely of low-body operators, this result becomes of practical importance when the loss L(θ) =

∑
x∈X Tr[Dα(x)|x〉〈x|ρθ]

is effectively composed entirely of low-body terms, i.e., if the global contributions to L(θ) are too small to be resolved
using the available shot budget. In that case, L(θ) is well approximated by its truncated version and our argument
applies. Whether this is or is not the case is determined by the choice in Dα(x).

We note that in this derivation we left the structure of Dα entirely general up to the constraint that it is diagonal in
the computational basis and acts only on a single copy of the model distribution at a time. But our proof can be directly
applied to general generative losses Lgen(θ, {CO}) for classical data which take expectation values of several observables
CO = Tr

[
Oρ⊗mθ

]
with operators O acting on m different sub-systems, each of which contains up to k-body terms in the

Pauli basis. That is, we have the general operator of the form

O =
∑

A1,...,Am⊆N
|A1|,...,|Am|6k

cA1,...,Am(α, P̃ ) (ZA1
⊗ ZA2

⊗ ...⊗ ZAm) , (C170)

where, A1, A2, ..., Am are subsets of N = {1, ..., n}, cA1,...,Am(α, P̃ ) are real coefficients that can depend on training data,
and ZAj =

⊗
i∈Aj Z(j−1)n+i acting non-trivially on the qubits of the jth subsystem.

This form of the general loss covers loss functions for quantum circuit Born machines (in particular the MMD, as out-
lined in Sec. III B), quantum GANS, quantum Boltzmann machines [110], and any other proposed (quantum) generative
model on classical discrete data. Therefore, any diagonal loss operator that implements a generative modelling loss and
contains only low-bodied operators cannot be used to reliably learn global probability marginals.

Appendix D: Analysis on the quantum fidelity loss

In this section, we present an approach that can be used to estimate the local fidelity quantity L(L)
QF (θ) using a series

of Hadamard tests without explicitly loading the training data into a quantum state or requiring a quantum oracle.
We begin by introducing a pure quantum state corresponding to the training dataset |φ〉 =

∑
x

√
p̃(x) |x〉. Learning

the training distribution is equivalent to the state learning task with |φ〉 as the target state. We note that our choice of
having the coefficient as

√
p̃(x) is arbitrary and, generally, any target quantum state with the probabilities corresponding

to the training probabilities would be valid candidates for the task.
As discussed in the main text, the quantum fidelity can be used as a cost function in this learning task

LQF (θ) = 1− |〈φ|ψ(θ)〉|2 . (D1)

However, the globality of the loss leads to barren plateaus, which in turn leads to the untrainability of the loss. However,
the local version of the quantum fidelity has been shown to be both trainable with the shallow depth circuits and faithful
to the original global version [92]. Specifically, the local quantum fidelity is of the form

L(L)
QF (θ) = 1− 〈φ|U(θ)HLU

†(θ) |φ〉 , (D2)

with

HL =
1

n

n∑
i=1

|0i〉〈0i| ⊗ 1ī , (D3)
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where |0i〉〈0i| are now single-qubit projectors. In the context of the generative modeling with classical, there is an
additional challenge as only the training dataset P̃ is given to us and not the state |φ〉. Using Hadamard tests, we now
show that measuring the local quantum fidelity can be achieved efficiently without loading the training data into the
quantum state. To see this, we first express HL in the Pauli basis

HL =
1

n

n∑
i=1

(
1i + Zi

2

)
⊗ 1ī (D4)

=
1
2

+
1

2n

∑
i

Zi . (D5)

We then expand L(L)
QF (θ) as

L(L)
QF (θ) =1− 〈φ|U(θ)

(
1
2

+
1

2n

∑
i

Zi

)
U†(θ) |φ〉 (D6)

=
1

2
− 1

2n

∑
i

〈φ|U(θ)ZiU
†(θ) |φ〉 (D7)

=
1

2
− 1

2n

∑
i,x,x′

√
p̃(x)p̃(x′) 〈x|U(θ)ZiU

†(θ) |x′〉 (D8)

=
1

2
− 1

2n

∑
i,x,x′

√
p̃(x)p̃(x′) 〈x|U(θ)ZiU

†(θ)Ux′,x |x〉 (D9)

=
1

2
− 1

2n

∑
i,x,x′

√
p̃(x)p̃(x′) 〈x| Ũ(θ, i,x,x′) |x〉 , (D10)

where in the third line we explicitly expand |φ〉 =
∑
x

√
p(x) |x〉, and in the fourth line we introduce Ux′,x which is the

unitary mapping from the computational basis x to x′ by applying the necessary single-qubit flips. Finally, in the last
line, we introduce Ũ(θ, i,x,x′) = U(θ)ZiU

†(θ)Ux′,x which summarizes the full unitary to be implemented for any pair
x and x′. Each term can now be estimated using two Hadamard tests, i.e., one for the real part and the one for the
imaginary part of each overlap. If Np ∈ O(poly(n)) is the number of unique bitstrings in the training dataset P̃ , one
thus requires 2nN2

p ∈ O(poly(n)) Hadamard tests to evaluate all terms in the loss. The number of Hadamard tests can
be reduced by a factor of 2 if the quantum model is constructed to span only either real or imaginary subspace. The
number of controlled unitaries can also be reduced to simple control phase gates by using a diagonal ansatz [111]. While
the number of Hadamard tests naively scales with the number of training bitstrings, this overhead is expected to be
significantly reduced by employing techniques such as stochastic gradient descent [93] which allows us to stochastically
optimize the loss in an unbiased manner.

Appendix E: Additional training with exponential support

As stated in the main text, QCBMs are not expected to be able to learn distribution with exponential support when
the training data are stored in classical computers. This is since even storing so much data is unrealistic beyond a few
dozens of qubits. However, due to the focus on systems with very few qubits, most applications taken from the literature
utilize on distribution with non-zero probabilities on a macroscopic number of bitstrings. Such cases can still be trainable
with the KL divergence and finite shots if the number of qubits is small enough (n 6 12). We perform the same training
procedure as in the main text in Sec. IV, with the additions of gradient batching over k = 10 iterations, and gradient
clipping with a threshold of τ = 0.1. These details aim at stabilising the optimisation and improve the performance, and
follow best practices. Fig. 11 shows this numerically on the ECAL dataset with n = 6 qubits. More particularly, we train
on a transformed version of the dataset that follows − log(p̃(x)), which exhibits exponential support (top three rows)
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and additionally on the original probabilities (bottom three rows), which have only a polynomial support, for different
number of shots (102, 103, 104 and ∞) and layers (1, 8 and 16). Each column is divided into two blocks of three plots
each, where the first shows the TVD during the training, the second the generated histograms with the best ansatz
against the target distribution, and the third the absolute error between the two distributions. We observe that the three
loss functions are comparable for the exponential support case, while KLD breaks down when the support is polynomial
and using fewer than 103 shots.

We recall that these numerics are not a contradiction with the message of this paper, since learning a distribution
with exponential support is not scalable using QCBMs, but may explain why the exponential concentration issue has
not been discussed for quantum generative models before.
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Figure 11. Training on the ECAL dataset with n = 6 qubits on a dataset with exponential support (top three rows) and one
with polynomial support (last three rows). The first rows shows the TVD during training, while the second displays the generated
distribution against the target one (black) and the third the absolute error between the two.
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