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Abstract

Building a quantum analog of classical deep neural networks repre-
sents a fundamental challenge in quantum computing. A key issue is how
to address the inherent non-linearity of classical deep learning, a problem
in the quantum domain due to the fact that the composition of an arbi-
trary number of quantum gates, consisting of a series of sequential unitary
transformations, is intrinsically linear. This problem has been variously
approached in the literature, principally via the introduction of measure-
ments between layers of unitary transformations. In this paper, we in-
troduce the Quantum Path Kernel, a formulation of quantum machine
learning capable of replicating those aspects of deep machine learning typ-
ically associated with superior generalization performance in the classical
domain, specifically, hierarchical feature learning. Our approach general-
izes the notion of Quantum Neural Tangent Kernel, which has been used
to study the dynamics of classical and quantum machine learning mod-
els. The Quantum Path Kernel exploits the parameter trajectory, i.e. the
curve delineated by model parameters as they evolve during training, en-
abling the representation of differential layer-wise convergence behaviors,
or the formation of hierarchical parametric dependencies, in terms of their
manifestation in the gradient space of the predictor function. We evalu-
ate our approach with respect to variants of the classification of Gaussian
XOR mixtures - an artificial but emblematic problem that intrinsically
requires multilevel learning in order to achieve optimal class separation.
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1 Introduction

Bridging classical deep neural networks and quantum computing represents a
key research challenge in the field of quantum machine learning [1, 2]. The po-
tential for improvement offered by quantum computing in the machine learning
domain may be characterized in terms of its impact on algorithmic efficiency,
generalization error, or else its capacity for treating quantum data [3].

A notable recent result in the field has been the introduction of the con-
cept of variational quantum algorithms and the related neural network analog
referred to as the quantum neural network (QNN) [4]. This, in essence, consists
of a feature map encoding data into a quantum Hilbert space upon which certain
parameterized unitary rotations are applied prior to final measurement in order
to obtain a classification or regression output. The system as a whole is then
optimized by classical methods. Such models provably lead to a computational
advantage over classical models on certain artificial tasks [5], and in respect to
the analysis of specific physical systems [6]. It has been quantitatively shown
that QNNs can be trained faster than their classical analogues [4]. However,
QNNs remain problematic in various respects. One limitation arises from the
so-called barren plateau problem [7], in which the variance of the gradient van-
ishes exponentially with the system size as the parameterized transformation
becomes increasingly expressive [8]. A number of approaches, including layer-
wise training of quantum neural networks [9], have been proposed to mitigate
the issue.

A second problematic aspect of QNNs, and the one that constitutes our
principal focus here, is the linearity of the dynamics of quantum systems. Con-
catenations of linear unitary transformations remain unitary and thus ‘stacked’
quantum transformations, in effect, collapse to a single linear transformation,
appearing to rule out de facto the hierarchical feature learning of classical deep
neural networks, which relies on non-linearities to separate feature layers. This
property makes the QNN essentially a kernel machine [10]. In terms of the pre-
dictor function, however, the QNN is composed of multiplications of rotation
operators parameterized by both the feature and model weights. The nonlin-
earity of projections of rotation operators can be exploited to replicate a very
constrained form of non-linearity for feature learning [11]. Another strategy is
to introduce nonlinearity via the measurement operation, i.e. a dissipative QNN
[12]. Both approaches involve the projection the quantum state into a subspace
of the original Hilbert space.

Much of the recent study of the dynamics of deep neural networks in the
classical realm has focused on the Neural Tangent Kernel (NTK) [13] which
represents the network in terms of the corresponding training gradients in the
model parameter space. The NTK hence approximates the behavior of predic-
tors via a linear model. It is often therefore applied to study neural networks
in their asymptotic, infinite-width, limit. In this regime, the network exhibits
lazy training [14], i.e. parameter gradients remain at their initial values during
the entirety of training. The NTK thus accurately characterizes the dynamics
of such infinite-width neural networks, but is otherwise only an approximation
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[15]. The difference in test error between the predictor and its linearized ver-
sion depends on the problem structure [16], with hierarchical feature learning
capability being crucial to obtaining superior performance [17]. However, the
kernel nature of the NTK means that it shares with quantum computing a ready
interpretation within a Hilbert space, and is thus of considerable interest within
quantum machine learning. The first explicit application of NTK to quantum
neural networks, the quantum neural tangent kernel (QNTK) was given in [18].

In this paper, we propose a method for overcoming the de facto lack of hierar-
chical feature learning capability in QNNs. We propose the application of Path
Kernels [19] to QNNs, which we call the Quantum Path Kernel (QPK). Such
an approach generalizes the QNTK so that the resulting kernel is representative
of the ensemble of NTKs calculated over the full parameter path trajectory, i.e.
the function describing the evolution of model parameters over time, includ-
ing implicitly any parametric evolutions corresponding to hierarchical feature
learning. We show experimentally an increased expressivity of the resulting
model relative to linearized equivalents, evaluating our method on the Gaus-
sian XOR mixture classification problem. For this problem, finite-width neural
networks have both theoretically and empirically shown to be close-to-optimal
performance whereas linear NTK models fail [20], suggesting that it cannot be
effectively resolved without implicating multilevel learning behavior. Further-
more, we discuss possible improvements for the proposed approach, which can
be obtained by considering only the contribution of the parameter gradient path
that gives rise to the most decorrelated feature representation. These specifi-
cally corresponds to the contributions associated with the maximally nonlinear
point of the parameter path, corresponding to the largest (positive or negative)
eigenvalues of the Hessian of the predictor function [21]. We further enhance
the decorrelation between feature representations via a stochastic, noisy, or
non-gradient-descent-based training algorithm in which the averaging operation
between decorrelated representations allows us to interpret the model as an
ensemble technique.

The paper is structured as follows. In Section 2 we briefly review the neces-
sary conceptual background. In Section 3 we present the Quantum Path Kernel
and discuss the hierarchical feature learning of the induced model. In Section 4
we demonstrate how this leads to superior performance in solving the Gaussian
XOR mixture classification problem. In Section 5 we draw our conclusions and
present directions for further work.

1.1 Contributions

• We propose the Quantum Path Kernel as a mechanism for building hybrid
classical/quantum machine learning models which are able to emulate the
hierarchical feature learning structure of deep neural networks without
violating the underlying linearity of the quantum dynamics.

• We provide numerical evidence of the superior performance of the Quan-
tum Path Kernel compared to the QNTK on the Gaussian XOR Mixture
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problem, which is Bayes optimally soluble only through implicating layer-
wise nonlinear separability.

• We consider the importance of the extraction of non-correlated feature
representations corresponding to maximally varying portions of the pa-
rameter gradient path.

1.2 Related works

The introduction of the NTK by [13] has marked a significant step in the the-
ory of machine learning, sheding new light on discussions regarding the relative
performance of linear and nonlinear models. For example, [16] suggests that
tasks in which kernel methods (including NTK) perform worse than neural net-
works are those in which the kernel suffers from the curse of dimensionality
whereas neural networks, in learning some useful lower dimensional represen-
tation, do not. One example of such a problem is the Gaussian XOR Mixture
classification task [20]. Furthermore, linearized models have been shown to per-
form slightly worse than wide (i.e. large, but non-infinite) neural networks on
CIFAR-10 benchmark [22], with the gap between the approaches increasing for
finite width networks [23].

In relation to quantum computation, researchers have spent substantial ef-
fort on the limitations imposed by the linear dynamics of quantum systems.
Authors in [24] review early approaches to the formulation of nonlinear quan-
tum machine learning models: some have focused on developing a quantum
perceptron equivalent or quantum neuron, i.e. a candidate building block for
the quantum analogue of neural networks; [25] uses phase estimation to im-
plement the functioning of a step function; [26, 27] propose to exploit the RUS
(repeat until success) policy to mimic the behaviour of tangent and sigmoid acti-
vation functions, while [28] uses RUS to construct a Born machine; [29] emulates
the nonlinearity of perceptrons using measurements. In relation to QNNs, [30]
propose dissipative QNNs in which the nonlinearity is obtained via intertwin-
ing measurements between unitary gates; [31, 32] propose the use of a larger
Hilbert space to implement the nonlinear transformation, while [33] exploits the
exponential form of unitary gate to achieve periodic activation functions. Fi-
nally, non-linear models of quantum mechanics have been conjectured by [34],
although these violate some computational complexity assumptions [35].

2 Background

This section briefly introduces the key concepts and notations in relation to Deep
Learning and Quantum Machine Learning through which we develop our results.
We denote by D = {(xi, yi)}ni=1 ⊆ X×Y a labelled dataset of pairs that are i.i.d.
sampled from an unknown probability distribution. We indicate the data vector
space with X = Rd, and the target space with either Y = R or Y ⊆ Z, |Y| <∞
for regression or classification tasks, respectively. We indicate uniform sampling
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from a uniform discrete distribution with ∼ {vi}ni=1 and sampling from a normal
distribution of mean µ and variance σ2 with ∼ N (µ, σ).

2.1 A primer on quantum machine learning models

Here we fix the notation for our quantum machine learning models. The state
of a quantum system of m-qubits is described by a density matrix ρ ∈ H ≡
C2m×2m

. The initial state of a quantum computation is denoted by ρ0 = |0〉〈0|,
and the (possibly parametric) unitary transformations by U, V,W . Any para-
metric unitary can be written as

U(θ) = exp

{
−i

m∑

k=1

fj(θ)σ(q1,...,qk)
α1,...,αk

}
, (1)

where αi ∈ {x,y, z,1} for i = 1, . . . , k, and σα1,...,αk
is a tensor product of

one or more corresponding Pauli matrices applied to qubits q1, ..., qk. The same
transformation may be interpreted as a rotation and be equivalently denoted by

R
(i1,...,ik)
α1,...,αk (θ), where θ ∈ RP are rotational angles. A quantum neural network

is a function of the form1:

f(x;θ) = Tr[ρx,θO] = Tr[V †(θ)U†φ(x)ρ0Uφ(x)V (θ)O], (2)

where O indicates any measurement operator. Both the matrices U and V
are decomposed in single and two-qubits parametric rotations interspersed with
non-parametric gates (e.g. CNOT).

2.2 Notions of nonlinearity in classical and quantum learn-
ing models

With respect to both kernel machines and layerwise deep learning, the concepts
of linear model, nonlinear model, and feature learning that we utilize here are
as formalized in [37]. A linear model is thus a function of the form:

f(x;θ) =

p∑

j=1

θjφj(x), (3)

where {φj : X → R}pj=0 are the feature functions, whose values corresponds
with the model features. We might consider an additional feature φ0 ≡ 1 that
incorporates the bias. The formula in Equation 3 is linear with respect to the
space of the parameters2 H ≡ Rp; in fact, we can interpret the function as an

1The most general form of QNN proposed is the data re-uploading QNN, which allows the
interspersing of data encoding and trainable transformations. Such a form, however, does not
add any computational power to the standard QNN approach [36].

2This formalism allows us to exploit even infinite dimensional Hilbert spaces, such as
the one implemented by the Gaussian feature map or RBF, mapping x to a multivariate
Gaussian of mean x and fixed covariance, existing in the space of square-integrable multivariate
functions.
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inner product in that space, i.e.

f(x;θ) = 〈θ,φ(x)〉Rp , (4)

with θ = (θ1, ..., θp) and φ(x) = (φ1(x), ..., φp(x)). The optimal parameters of
such a model can be found analytically by solving the linear regression problem
over the Mean Squared Error loss, which is a convex, quadratic function of the
parameters. The representer theorem guarantees that the optimal solution is a
span of the m data points of the training set, which is independent from the
dimensionality n of the space H. Obviously, a model which is linear in the
parameters may well behave nonlinearly with respect to the original feature
space X , due to the feature functions.

A nonlinear model is a function of the form:

f(x;θ) =

p∑

j=1

θjφj(x) +
ε

2

p∑

j,k=1

θjθkψj,k(x) +
ε

3!

p∑

j,k,`=1

θjθkθ`ψj,k,`(x) + · · · (5)

The higher-order terms of the expansion are characterized by their own set of
features, e.g. {ψj,k : X → R}pj,k=1 for the second order term. The elements
of such sets are unique up to a permutation of their variables, thus the terms
1/2!, 1/3!, ... compensate the multiple counting of such elements in Equation 5.
The term ε � 1 adjusts the contribution of the nonlinear terms. If the model
is truncated to the second term it is denoted as quadratic model. In such a
case, the loss function is quartic, thus we cannot find analytically the optimal
parameters as in the linear regression. The dynamic of such a model is described
by

f(x,θ + dθ) (6)

= f(x,θ) +

p∑

j=1

dθj

[
φj(x) + ε

p∑

k=1

θjψj,k(x)

]
+
ε

2

p∑

j,k=1

dθjdθkψj,k(x) (7)

= f(x,θ) +

p∑

j=1

dθjφ
E
j (x;θ) +

ε

2

p∑

j,k=1

dθjdθkψj,k(x) (8)

where φE are effective feature functions, i.e. features that depend on, and
evolve with, the model parameters, which are learnt during the optimization
phase. This behaviour can be generalized to consider terms of even higher
orders: the presence of order n terms make the feature functions of order n− 1,
effectively, which may further influence the lower order terms. Models having
effective feature functions have feature learning capabilities. A deep learning
model is both capable of feature learning and composed of several nonlinear
modules arranged in a hierarchical fashion [38]; such that differing layers can
follow differing (albeit hierarchically conditioned) gradient paths.

Turning to QNNs, the quantum model

f(x;θ) = Tr[ρx,θO], (9)
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where ρx,θ = V †(θ)U†φ(x) |0〉〈0|Uφ(x)V (θ), and O Hermitian observable, is a
linear model in the space of density matrices of the quantum system H: the
trace operation Tr

[
A†B

]
is an inner product for the space of matrices Ck×k.

Such a property implies that the construction of a layer-wise architecture for
v, i.e. v(θ) =

∏
i Vi(θ) effectively collapses to a single operation: this may

add more degrees of freedom to the linear transformation3 but cannot make the
model nonlinear in H.

However, in terms of the predictor function f(x;θ), the quantum model
does not necessarily fit the form set out Equation 3 since the parameters of the
QNN model, namely the angle of rotation operation (in the form of imaginary
exponential function), are subject to the trace operation. Thus, for example,
consider a single-qubit quantum model acting on a single input x ∈ R1, de-
pending on a single parameter θ ∈ R1, with feature map Uφ(x) = exp(−ixσx),
variational form V (θ) = exp(−iθσx) and measurement operator i O = σz, in
which case f(x;θ) has the form:

f(x;θ) = Tr
[(

cos2(θ+x) −i sin(θ+x) cos(θ+x)
1
2 i sin(2(θ+x)) sin2(θ+x)

)(
1 0
0 −1

)]
= cos(2(θ + x)) (10)

which is nonlinear in its weights. Clearly, if we were to consider a model other
than a QNN then the predictor function would change, for example as in [29],
however it does not alter our argument here.

To recap, a QNN is a linear model in the Hilbert space of the density matri-
ces due to the linearity of the evolution of closed quantum systems. However,
its predictor is nonlinear in the parameter θ since its structure results in a com-
position of trigonometric functions. This potentially allows a limited degree of
representational learning capability if aggregated layer-wise (limited in the sense
of applying only to a highly constrained set of activation functions). However,
due to the Lie algebraic equivalence of any given sequence of quantum transfor-
mations to some single unitary operation in the absence of the trace operation,
we are still not able to characterise truly deep models in the quantum domain.

2.3 Characterization of model dynamics through the Neu-
ral Tangent Kernel

The output f(x;θ) of a machine learning model trained via (possibly stochastic)
gradient descent can be approximated as a first-order Taylor expansion f(x;θ) ≈
f(x;θ0)+∇θf(x;θ0)(θ−θ0). Such an approximation allows the representation
of machine learners as linear (kernel) models via the Neural Tangent Kernel
(NTK, [13]):

kntk(x,x′;θ) = ∇θf(x;θ) · ∇θf(x′;θ) (11)

Such a tool has been used in [14] to characterize the dynamics of infinite-
width neural networks, in which the NTK is independent of the random ini-
tialization and constant in time. On a coarse level of detail, we can assert that

3depending on the generators involved and up to a maximum of 4n − 1 (where n number
of qubits)
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model training in lazy-training regime, i.e. when the evolution of θ(t) during the
training of the model f(x,θ) closely follows the tangent path, can be decently
approximated by the NTK. A more detailed analysis in [15] has revealed that
the NTK is constant if and only if the model is linear (in its parameters). Such
a result allows us to quantify the nonlinearity of a model through its Hessian
norm of the predictor function: if ‖Hf‖ � ‖∇wf‖ then the model is nearly
linear. This has been used in [11] to analyze the behaviour of the QNNs in the
lazy training regime.

3 The Quantum Path Kernel Framework

No extant quantum method is thus able to fully capture the deviations from
gradient path linearity manifested by empirically optimal learners in the classical
domain. Hence, in order to encompass the concepts of hierarchicality and feature
learning in (implicitly kernel-based) quantum machine learning models, we here
introduce for the first time in the quantum realm a key idea of Domingo’s [19],
namely Path Kernelization.

Within this paradigm, for any machine learning model fθ̄(x) whose param-
eters θ̄ are learned from a set D = {(xi, yi)}ni=1 by gradient descent via a
differentiable loss function, it is possible to express the resulting (i.e. trained)
classifier as:

fθ̄(x) ≈
n∑

i=1

αi(x) kpath(x,xi; γ̄) + α0(x) (12)

where

kpath(x,x′; γ) =

∫

γ

∇θf(x;θ) · ∇θf(x′;θ) dθ (13)

is the Path Kernel, i.e. the line integral of kntk over the multidimensional curve
representing the evolution of the parameters θ = γ(t), t ∈ [0, T ] during training,
with θ̄ = γ̄(T ). In general, chain rule dependencies arising from the specifics of
the architecture of the network will imply hierarchical dependencies among the
parameters during learning. The result holds even for stochastic gradient de-
scent optimization, in which case Equation 13 is a stochastic integral. However,
it is not immediately clear that this path integration obeys Mercer’s conditions;
while it is generally true that a convex sum over Mercer kernels is itself a Mercer
kernel, the path over which we are integration is here dependent on the training
objects. We therefore dedicate Appendix A to proving that the Path Kernel is
effectively Mercer, and set out the pseudocode for its construction.

It is thus central to our argument to examine the parameter path γ and its
morphological evolution. For linear models, assuming a vanilla gradient descent
training over a convex loss function L, the parameter path is described by a
linear vector {(1 − t)θ0 + tθf | t ∈ R} where θ0 ∈ Rp are the parameters at
their initialization, and θf ∈ Rp are the parameters at their convergence on the
(ideally global) minima of L. In such a case, it is immediately possible to check
that the derivative of the linear model ∇θf is independent of θ, and thus that
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θ1
θ2

t

γ(t4)

γ(t7)

γ(t12)

γ(t15) γ(tT )

NTK(γ(t4))

NTK(γ(t7))

NTK(γ(t12))

NTK(γ(t15))

NTK(γ(tT ))

1
T

∑
=

Path Kernel

Figure 1: Computation of the Path Kernel. Bottom left : A typical parameter
trajectory γ is depicted, representing parametric evolution during the training
phase. Top left : as θ evolves, it gives rise to differing NTK matrices, corre-
sponding to distinct representations of the data. Such a sequence of matrices
thus give rise to a hierarchical stack of representations in the feature learning
regime. Middle: as the training approaches convergence, subsequent matrices
become similar to each other, and thus their corresponding representations are
correlated. Right : the Path Kernel constitutes the average over these represen-
tations.

the NTK is constant. For nonlinear models, the loss function L may become
non-convex and γ is not constrained to be a linear trajectory. In this latter case,
both the ∇θf and the NTK will vary in time.

In this work, we will not focus on the possible role of Path Kernels in approx-
imating nonlinear models. Instead, we shall exploit the intrinsically hierarchical
structure of the Path Kernel to implement a hybrid deep machine learning model
within a quantum neural network setting. We depict the construction of this
object in Figure 1. The parameter trajectory for a nonlinear model is described
by a complex, non-straight curve. Each point of the parameter path θt = γ(t)
may be used to define a new kernel representation for the training data, namely
kntk(x,x′;θt). We can then define a sequence of kernels stacked in a hierarchical
way (whose structure, in passing, resembles the layers of a deep neural network,
though this observation is peripheral to the argument being made here). Thus,
each new “layer” is a source of representation learning: the new representation
(i.e. kernel matrix) is the result of an optimization process that further adapts
the previous representation to the given data discrimination problem (which
resembles, though is again not equivalent to, classifier boosting).

It thus becomes possible, via explicit substitution for the corresponding
Quantum NTK previously defined, to construct a Quantum Path Kernel (QPK)
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as follows:

kqpk(x,x′; γ)

=
1

‖γ‖

∫

γ

∇θ 〈0|V †(x)U†(θ)OU(θ)V (x)|0〉T · ∇θ 〈0|V †(x′)U†(θ)OU(θ)V (x′)|0〉 dθ

(14)

=
1

‖γ‖

∫ T

0

∇θ 〈0|V †(x)U†(γ(t))OU(γ(t))V (x)|0〉T · ∇θ 〈0|V †(x′)U†(γ(t))OU(γ(t))V (x′)|0〉 · γ′(t) dt
(15)

≈ 1

T

T−1∑

t=0

∇θ 〈0|V †(x)U†(γt)OU(γt)V (x)|0〉T · ∇θ 〈0|V †(x′)U†(γt)OU(γt)V (x′)|0〉

(16)

where Equation 14 defines the QNTK as its classical analog and is equivalent
to Equation 15 except for the integration with respect to time. Equation 16
is the discretized version of the preceeding equations, corresponding to actual
implementation in a gradient descent-trained model.

The resulting Quantum Path Kernel (QPK) is consequently both a quantized
version of Domingo’s Path Kernel as well as a generalization of the Quantum
NTK, one that is implicitly capable of embodying the complex parametric inter-
actions (such as transient parametric co-evolutions) that occur during learning
in order to arrive at the final trained model, including those implicated in hier-
archal feature learning.

3.1 The Quantum Path Kernel as a generalization of Quan-
tum Neural Tangent Kernel

In interpreting the Quantum Path Kernel as a generalization of QNTK for
models exhibiting nonlinear behavior, it may be seen that the QNTK is constant
only when independent of θ, in which case:

kqpk(x,x′; γ) =
1

‖γ‖

∫

γ

kqntk(x,x′;θ) dθ = kqntk(x,x′;0)

∫

γ

dθ

‖γ‖ = kqntk(x,x′;0).

(17)
That is, the Quantum Path Kernel becomes identical to the Quantum Neural

Tangent Kernel. However, as set out in section 2.2, the particular structure of
QNNs will, of itself, give rise to a nonlinear predictor. Thus, in principle, the
QNTK would not be expected to be constant in output terms in the finite width
regime [11]. However, a close-to-constant behavior can be expected for quantum
machine learning models whose training is lazy (i.e. lazy training induced via
overparameterization of the QNN, such that the large number of parameters
result in a simplified loss landscape [39, 40], leading to rapid convergence to a
global minima).
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3.2 Decorrelation in feature representation

The Quantum Path Kernel clearly exhibits dependency on the training initial-
ization: different initial parameter values, optimization algorithms or learn-
ing rates may lead to differing QPK matrices. In particular, the utilization of
‘vanilla’ gradient-descent optimization algorithms, with a fixed number of train-
ing epochs, may introduced subtle biases in the QPK. For example, if training
were to converge rapidly, any contribution between the instance of convergence
and the end of the training will be effectively identical and oversampled: this
contribution will hence outweight the others, biasing the ‘stack’ of aggregated
kernel matrices toward its final layer, as per 1.

To avoid this, more sophisticated optimization algorithms can be considered.
For example, the ADAM optimizer adaptively increases the learning rate in lo-
cally convex portions of the loss landscape, leading to fewer similar contributions
within the path kernel. Furthermore, it is possible to perturb parameter paths
via stochastic, noisy or non-gradient-descent-based optimization techniques in
order to decorrelate subsequent contributions to the QPK. Having different,
highly decorrelated contributions would allow us to interpret the QPK as an
ensemble technique analogous to bootstrap aggregation (bagging) often used
for tuning the bias/variance trade off in classical machine learning. (Multiple
Kernel Learning [41] might also be used to optimally weight individual contri-
butions over the kernel at the expense of interpretability in path terms) .

Appendix A.3 discuss implementation details for the QPK and its tested
variants. We therefore now turn to an examination of the test regime.

4 Experimental evaluation of the Quantum Path
Kernel in classifying Gaussian XOR Mixtures

1. Generate dataset 2. Train QNN 3. Compare NTK and PK

|0⟩ V (x) U(θ)

θ L(θ)

NTK

PK
SVM

Figure 2: Gaussian XOR Mixture classification experiment workflow.

Machine-learning non-linearities such as those underpinning feature learning
in empirical DNNs can thus be feasibly implemented in a quantum setting via
the QPK. It remains to demonstrate that this can yield superior generalization
performance on plausible quantum devices. Our evaluation, therefore, considers
the reference case of the Gaussian XOR Mixture classification problem [42, 43,
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|0⟩ Ry(x1)

Rzz(θ1)

Rzz(θ1)

Rx(θ2)

Rzz(θ3)

Rzz(θ3)

Rx(θ4)

|0⟩ Ry(x2)

Rzz(θ1)

Rx(θ2)

Rzz(θ3)

Rx(θ4)

|0⟩ Ry(0) Rx(θ2) Rx(θ4)

Uϕ(x) V (θ) having L = 2 layers

• • • •

• • • •

Figure 3: Quantum circuit schematic of the classification model used for d = 3
qubits and L = 2 layers.

44].
In particular, the Gaussian XOR Mixture classification problem is an impor-

tant benchmark for highlighting layer-wise learning capabilities of a model (or
the lack of them), in that it intrinsically requires a two-layer solution in order
to achieve Bayes optimal class separation. Theoretical evidence has shown that
kernel methods, in particular those with random features, struggle to accurately
classify XOR data vector mixtures [20]. In Appendix B we further analyze the
problem, reproducing the results of [20], and proposing an interpretation of
the success of feature learning models in tackling the Gaussian XOR Mixture
problem.

Our experimental workflow is pictured in Figure 2. Firstly, we generate the
dataset for the above described problem. Secondly, we train several QNNs to
best fit the generated data. Thirdly, we use the training information to create
the QNTK and QPK matrices; the latter are used to train a kernel machine
(specifically the Support Vector Machine) to obtain final classifications. Then,
our analysis begins with convergence study of the QNNs with an increasing num-
ber of layers, to highlight the effect of architectural parametrization in QNNs.
Finally, we compare the performances of the QNTK and QPK approaches in
terms of testing and training accuracy. The simulation details are shown in
Appendix C.

4.1 Experimental Setup

The ground truth Gaussian XOR Mixture dataset is specified by d the dimen-
sionality of the features, d′ ≤ d the number of non-zero features representing
the multidimensional Gaussian XOR Mixture, ε̄ the variance of the Gaussian
noise, and n the number of data points; it is composed as follows:

Dd,d′,ε̄,n =

{
([x1 + ε1, ..., xd′ + εd′ , 0, ..., 0]T , yi)

∈ Rd × {±1}

}n

j=1

(18)

where xi ∼ {±1}, εi ∼ N (0, ε̄) for i = 1, ..., d′, and yi =
∏d′

i=1 xi. Such a dataset
is optimally classified via the oracle function

foracle(x) =

d′∏

i=1

xi. (19)
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We generate multiple datasets Dd,d′,ε,n having feature dimensionality rang-
ing in d = 2, 3, ..., 10, noise ranging in ε = 0.1, 0.2, ..., 1.0, number of non-zero
features fixed to d′ = 2, and number of elements fixed at n = 32. Then, each
dataset has been randomly partitioned into a training set Dtrain and a testing
set Dtest.

Each dataset is processed by a distinct quantum neural network, each sharing
the same structure described by:

f(x;θ) = Tr[ρx,θO] = Tr[V †(θ)U†φ(x)ρ0Uφ(x)V (θ)O] (20)

with data encoding:

Uφ(x) =

d∏

j=1

exp
{
−i xjσ(i)

y

}
(21)

such that the trainable ansatz is described:

V (θ) =

L∏

j=1

exp
{
−i θ2i+1σ

(j)
x

}
exp
{
−i θ2iσ

(j)
z ⊗ σ(j+1 mod d)

z

}
(22)

with the L hyperparameter representing the number of layers of the model.

Finally, the observable is O = σ
(0)
z .

This data encoding is been chosen for its simplicity: the encoding of one
feature for each qubit results in a constant-depth circuit. The choice of the
trainable ansatz, though, is particularly important: the underlying functional
transformation has the potential to be affected by barren plateau issues if it
is too expressive [8], for example when the parametric transformation is able
to approximate any arbitrary unitary matrix. The expressibility of a quan-
tum transformation can be examined using Lie-algebraic tools as shown in [45].
Among the class of unitaries that are non-maximally expressive, we have se-
lected a specific form that has empirically demonstrated favorable trainability
as detailed in [40, Fig. 7a]. The choice of the observable is also guided by
the necessity of avoiding the barren plateau issue. According to [46], global
observables are likely to exhibit vanishing gradients; we thus apply the simplest
possible classifier observable acting on a single qubit. The circuit is pictured
in Figure 3. In our experiment, the observed qubit is the uppermost; although
any other qubit choice would result in a similar predictor due to the symmetric
structure of the circuit.

Each dataset is processed with the above described QNN employing a num-
ber of layers ranging from L = 1 to 20. According to [47], the QNNs should
be initialized at θ = 0 to avoid further trainability issues. However, we do not
need to consider such initialization strategy for the variational unitary since
the previous expedients were sufficient to allow successful training. Thus, the
parameters θj are sampled from a standard normal distribution. Each QNN is
trained using the stochastic gradient-descent algorithm ADAM for 1000 epochs
using an initial (adaptive) learning rate η = 0.1. The loss function is either
BCE or MSE and, for the sake of simplification, the batch size is equal to the
total cardinality of the training set.
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In the experimental setup described above, we study, both epoch-wise and
depth-wise, the effect induced by different initialization parameters on the con-
vergence of the loss function during training.

4.2 Results

We evaluate the depthwise convergence characteristics of the respective f(x;θ)
models in terms of the corresponding accuracies of the Quantum Path Ker-
nel and Quantum NTK under SVM final classification. Of particular interest
is evaluating the closeness of models to the lazy training regime, indicative of
the model being near to linear. Lazy training, in classical machine learning,
typically occurs for very wide neural networks with the loss decreasing to zero
exponentially rapidly, while network parameters stay close to their initializa-
tion values throughout training. In the current context, this would correspond
to the Quantum Path Kernel collapsing to the Quantum Neural Tangent Ker-
nel, and we would anticipate convergent classification performances for the two
approaches.

We therefore evaluate training loss for each of the QNN models over the re-
spective training epochs with an increasing number of QNN layers L = 1, ..., 20.
This will be used to determine proximity to the lazy training regime (i.e. identi-
fying if the QNN converges exponentially fast to zero loss). We additionally plot
the norm difference between the parameters during training compared to their
initialization values. These will be used to determine the extend to which pa-
rameters vary from their initialization, indicative the training richness of models
in the non-lazy training regime.

We are also interested in determining the robustness of the classifiers to
stochastic noise influences during training and their corresponding resilience
to overfitting (or the extent to which benign overparameterization [39] effects
exists), measured in terms of generalization performance. Therefore, the above
evaluations are repeated for datasets additively noise-perturbed in an increasing
signal-to-noise ratio.

Finally, we are interested in comparing the generalization performances of
our approach to that of the QNTK. For this, we evaluate test accuracy score for
the QPK and QNTK, against the oracle. Superior performance of the QPK, in
solving the Gaussian XOR Mixture problem, will be taken to be indicative of
superior ability to replicate the layerwise feature-learning capability of classical
multilayer networks.

4.2.1 Depthwise convergence characteristics

Figure 4 indicates the respective convergence behavior of the evaluated quan-
tum machine learning models with respect to the increasing number of layers.
Column 1 has illustrative samples from the training distribution with row-wise
decrements in the signal-to-noise ratio, column 2 gives the corresponding loss
curves during training, and column 3 indicates the corresponding change in the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: Behavior of the quantum machine learning models f(x;θ) over the
training phase. (4a) illustrates the training dataset for the parameter selec-
tion d = 4, ε = 0.1; (4b) shows the evolving loss for each of the 20 evaluated
depthwise models (L = 1, ..., 20) during training; (4c) quantifies the deviation of
the parameter vector from its initialization. (4d-4e-4f) show the corresponding
information when d = 4, ε = 0.4; (4g-4h-4i) for d = 4, ε = 1.0.
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(a) (b) (c)

Figure 5: Respective test accuracy scores for the Quantum Path Kernel model,
the Quantum NTK and the oracle. Error bars represents the standard deviation
over three (otherwise identical) experiments having parametric specifications
d = 4, ε = 0.1, (5a); d = 4, ε = 0.4 (5b); d = 4, ε = 1.0 (5c).

magnitude of the parameter vector offset from initialization:

‖θ(n)− θ(0)‖
‖θ(0)‖ (23)

where θ(0) is the value of the parameters at their initialization, and θ(n) is their
value at the n-th epoch.

It is evident that none of the models reach the interpolation threshold [48]
- i.e. the point at which the training data is fitted perfectly with zero training
error. To fit the training dataset we would need at least 32 parameters (2 non-
zero coordinates per point per 16 points). However, we are not able to reach
the interpolation threshold even in the deepest configuration with a total of
40 parameters. This behaviour is expected by the choice of a parametrically-
constrained U in effect acting as a form of regularisation. As in the classical
DNN case, an increasing number of parameters results in a decrease in the loss
(Figure 4b-4e-4h), and in an increase in the proximity between the parameter
vectors and their initialization (Figure 4c-4f-4i).

We can conclude that none of the QNN models exhibit evidence of lazy
training. In particular, while models having a higher number of parameters do
indeed converge more rapidly, parameters are nonetheless varying substantially
from their initialization. This behaviour is even more noticeable in the smaller
models, with a norm difference oscillating substantially prior to the convergence.
Such non-trivial training is suggestive of the QPK differing largely from the
QNTK in its training characteristics.

4.2.2 Test and train accuracy of the Quantum Path Kernel verses
the Quantum NTK

Figure 5 indicates the corresponding test accuracies, measuring how well the re-
spective models generalize to unseen data. While the QPK and Quantum NTK
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(a) (b) (c)

Figure 6: Respective training accuracies of the Quantum Path Kernel model,
the Quantum NTK and the oracle. Error bars represents the standard deviation
over three (otherwise identical) experiments having specifications d = 4, ε = 0.1,
(6a); d = 4, ε = 0.4 (6b); d = 4, ε = 1.0 (6c).

models both perform similarly at low signal-to-noise ratios, it is particularly
striking to observe the outperformance of the QPK over the Quantum NTK
with increasing hierarchical depth at the highest signal-to-noise setting..

Figure 6 indicates the training accuracy with depth at the point of conver-
gence. It may be observed that the QPK exhibits lower loss than the Quantum
NTK across the full signal-to-noise range, with the effect becoming more marked
at higher noise levels (ultimately over-fitting relative to the noise-free oracle in
panel c), consistent with the expectation that QPK has a lower bias than the
Quantum NTK.

In sum, results confirm the anticipated improvement in performance for the
QPK over the QNTK in the Gaussian XOR mixture setting.

5 Conclusion and Further Work

We have introduced the Quantum Path Kernel as a mechanism for incorporat-
ing key complex classical multi-layer network learning behaviors, in particular
hierarchical feature learning, within quantum neural networks via an appropri-
ately expressive kernelization of the training process. We evaluate our approach
on the Gaussian XOR mixture classification problem, a straightforward bench-
mark of multilayer learning capacity that requires a minimum two-layer solution
in order to approach Bayes optimally. Experimental results indicate superior
generalization performance relative to the Quantum NTK, an advantage which
is especially pronounced in high-depth, low signal-to-noise settings.

We have shown theoretically that the Quantum Path Kernel converges to
the Quantum NTK only in the lazy training regime, i.e. when the training
loss decreases to zero exponentially fast whilst model parameters stay close to
their initializations across training. Such behaviour is classically seen in infinite-
wide neural networks, whose behaviour is then close to that of a linear model.
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Our experiments, by contrast, indicate that QNNs do not operate in the linear
regime.

We have discussed, though do not evaluate in the current paper, the potential
for using stochastic, noisy or non-gradient descent based optimization techniques
to artificially perturb parameter paths within the QPK in order to implicate
more decorrelated feature representations. We, furthermore, propose in future
to extend the QPK approach via weighting of individual kernel representations
in a more heuristic way, for example via Multiple Kernel Learning. We have
also referred in passing to the interpretation of the QPK as an ensemble method
due to the averaging operation over its kernel matrices. This will be explored
more fully in future investigations.
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[32] Zoë Holmes, Nolan Coble, Andrew T Sornborger, and Yiğit Subaşı.
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A Theoretical and implementational details of
the Path Kernel in the classical machine learn-
ing domain

The Path Kernel was introduced in [19] as a means of replicating arbitrary
gradient-descent based machine learning models in the form of kernel machines,
under some weak assumptions. The Path Kernel is consequently of inherent
interest in the theory of classical machine learning in that it grants a further layer
of interpretability to models, including those, such as the neural networks, that
often lacks this [49]. In contrast, kernel machines permit a clear interpretation
of prediction functions in terms of linear combinations of data in the training
set as a consequence of the Representer Theorem. In particular, [19, Theorem
1] indicates that the model f(x;w) : RD ×RP → R (with D the dimensionality
of the data and P the number of model parameters) can be rewritten:

f(x; w̄) =

m∑

i=1

wi(x)Kpath(x,xi; γ̄) + w0(x). (24)

where

Kpath : RD × RD × ([0, T ]→ RP )→ RD (25)

Kpath(x,xi, γ) =

∫ T

0

Ktang(x,xi, γ(t)) · γ′(t)dt (26)
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is the Path Kernel, a parametric kernel function (this parameterization has
been rendered explicit in current formulation). In this case, γ̄ : [0, T ] → RP
is the parameter path as detailed in Section 3 with a terminal parameter value
γ̄(T ) = w̄. The Neural Tangent Kernel can also be expressed as a parametric
kernel,

Ktang : RD × RD × RP → R (27)

Ktang(x,xi;w) = ∇wf(x,w) · ∇wf(xi,w). (28)

Equation 24 holds under the proviso that f is differentiable in w, and trained
via Gradient Descent (GD) for the given training dataset {(xi, y∗i )}mi=1 ⊆ RD×R
using the convex differentiable loss function L(w) =

∑M
i=1 `(f(xi), y

∗
i ).

Equation 24 differs from a linear model due to the explicit dependency of
the data x in the weights wi, and it remains a matter of discussion as whether
the path kernel in fact represents a more generalized model class than that of
kernel machines (although it is clearly equivalent for infinitely small learning
rates [50]). This debate need not concern us for the present purposes, where
the intent is to obtain a class of models capable of representing the network
gradient trajectory in a manner expressible on current quantum computers.

As the Path Kernel is not widely deployed in practical machine learning, we
detail here some of its properties. In A.1 we prove the Path Kernel is a Mercer
Kernel. In A.2 we briefly comment on the proof of [19, Theorem 1]. In A.3 we
demonstrate a numerical implementation of the Path Kernel.

A.1 Path Kernel is a Mercer Kernel

Given any γ̄, the function K̄path(x,x′) = Kpath(x,x′; γ̄) is a positive definite or
Mercer kernel on RD. A Mercer kernel satisfies

n∑

i=1

n∑

j=1

cicjK(xi,xj) ≥ 0 (29)

for all sequence of elements x1, ...,xn ∈ RD and constants c1, ..., cn ∈ R.
It is straightforward to demonstrate that such a condition is valid of the Path

Kernel. Firstly, K̄tang(x,xi) = Ktang(x,xi;w) is a positive definite function for
any w in consequence of the positive definiteness of the Gram matrix of inner
products in its parameter space RP . Secondly, since both the positive combina-
tion and the infinitesimal limit of combinations of positive definite kernels still
satisfy the Mercer condition, then the preceding is immediately valid for the
Path Kernel in both its discrete and continuous formulations.

A.2 Comment on Theorem 1 in Domingo’s work

In this section we comment on [19, Theorem 1] in order to highlight some of its
limitations. The dynamics of any predictor under training via gradient descent
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may be described by a first-order non-homogeneous differential equation:

df(x;w)

dt
= −

P∑

j=1

∂f

∂wj
· ∂L
∂wj

. (30)

where f(x;w) : RD × RP and L is the convex differentiable loss function. We
can describe these predictor dynamics over training in terms of the Tangent
Kernel:

df(x;w(t))

dt
=

d∑

j=1

∂f(x;w)

∂wj
· dwj
dt

(31)

=

d∑

j=1

∂f(x;w)

∂wj
·
(
−∂L(w(t))

∂wj

)
(32)

=

d∑

j=1

∂f(x;w)

∂wj
·
(
−

m∑

i=1

∂`(y∗i , f(xi;w))

∂wj

)
(33)

=

d∑

j=1

∂f(x;w)

∂wj
·
(
−

m∑

i=1

∂`(y∗i , yi)
∂yi

∂f(xi;w)

∂wj

)
(34)

= −
m∑

i=1

∂`

∂yi

d∑

j=1

∂f(x;w)

∂wj

∂f(xi;w)

∂wj
(35)

= −
m∑

i=1

∂`

∂yi
∇wf(x;w) · ∇wf(xi;w) (36)

= −
m∑

i=1

∂`

∂yi
Ktang(x,xi;w) (37)

In the limit ε→ 0 we obtain:

f(x) = f(x; γ(T )) = f(x; γ(0)) −
∫ T

0

m∑

i=1

∂`

∂yi
Ktang(x,xi; γ(t)) dt. (38)

Such a function cannot be straightforwardly represented as a linear model. How-
ever, by multiplying and dividing by the Path Kernel itself we obtain the fol-
lowing equation, at the cost of introducing a dependency of x in the model
parameters:

f(x; γ(T )) = f(x; γ(0)) +

m∑

i=1

(
−
∫ T

0
∂`
∂yi

Ktang(x,xi; γ(t))dt

Kpath(x,xi; γ)

)
Kpath(x,xi; γ)

= f(x; γ(0)) +

m∑

i=1

αi(x)Kpath(x,xi; γ). (39)
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procedure CreateNeuralTangentKernel
Input: predictor function f : Rd × Rp → R, data set {xi ∈ Rd}n−1

i=0 ,
parameter value w ∈ Rp.

Output: real symmetric matrix n× n representing the neural tangent
kernel of f over the given dataset.

▷ Start procedure
M ← zero filled n× p matrix
for i ∈ 0, ..., n− 1 do

M [i]← ∇f(xi, w) ▷ The array has size p.

return MMT ▷ Matrix size: (n× p)(p× n) = (n× n)

Figure 7: Pseudo-code for the Neural Tangent Kernel formulation.

procedure CreatePathKernel
Input: predictor function f : Rd×Rp → R, data set {xi ∈ Rd}n−1

i=0 , pa-
rameter path γ ∈ Rp×t obtained during the gradient descent-based training
phase.

Output: real symmetric matrix n× n representing the Path kernel of
f over the given dataset.

▷ Start procedure
M ← zero filled t elements array
for j ∈ 0, ..., t− 1 do

w ← γ[j]
M ←M +CreateNeuralTangentKernel(f, {xi}n−1

i=0 , w)

return 1
tM

Figure 8: Pseudo-code for the Path Kernel formulation.

Various works have suggested that imposing stronger assumptions on train-
ing can remove the dependency of x in the model parameters. For example, the
authors in [50] achieve this by imposing a requirement that the loss derivative
is of constant sign during training.

A.3 Numerical calculation of the Path Kernel

We can calculate the value of the Path Kernel by approximating the integral
with a direct sum

Kpath(x,xi, γ) =

∫ T

0

Ktang(x,xi, γ(t)) · γ′(t) dt ≈
T−1∑

t=0

Ktang(x,xi, γ[t]) (40)

The implementation details are reported in the following pseudo-code list-
ings. In Figure 7 we indicate how to calculate the Neural Tangent Kernel of
the predictor f once the parameter value w is fixed. In particular, the gradi-
ent can be calculated with the finite difference method or, if the predictor is
implemented with a Quantum Neural Network, with the parameter-shift rule.

The procedure for calculating the Path Kernel is shown in Figure 8 and
uses the Neural Tangent Kernel to calculate the individual contribution of each
training epoch and thereafter calculates the average kernel matrix pointwise.

In Section 3.2 we discussed the potential significance of decorrelated features;
we here propose a numerical implementation of the Effective Path Kernel. In
contrast to the original Path Kernel, the Effective Path Kernel seeks to avoid to
biasing due to multiple similar kernel contributions. This is especially important
if the training has converged signficiantly earlier that the last training epoch:
any contribution after convergence has the same Neural Tangent Kernel and will
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procedure CreateEffectivePathKernel
Input: predictor function f : Rd × Rp → R, data set {xi ∈ Rd}n−1

i=0 ,
number of training epochs t, parameter path γ ∈ Rp×t obtained during the
gradient descent-based training phase, correlation threshold C ∈ [0, 1].

Output: real symmetric matrix n×n representing the Effective Path kernel
of f over the given dataset.

ℓ← CreateEffectivePathKernelRec(f, {xi}n−1
i=0 , γ, C, 0, t− 1)

n← number of elements in the list ℓ
return 1

n

∑n−1
i=0 ℓi

procedure CreateEffectivePathKernelRec
Input: predictor function f : Rd × Rp → R, data set {xi ∈ Rd}n−1

i=0 ,
parameter path γ ∈ Rp×t obtained during the gradient descent-based training
phase, correlation threshold C ∈ [0, 1], start instant ts ∈ [0, ..., t), end instant
te ∈ [0, ..., t), ts < te.

Output: array of t elements, each one coarsely quantifying the curvature
of the parameter path at each training epoch.

▷ Start procedure
if ts ≥ te then

return [] ▷ Empty list

Ms ← CreateNeuralTangentKernel(f, {xi}n−1
i=0 , γ[ts])

Me ← CreateNeuralTangentKernel(f, {xi}n−1
i=0 , γ[te])

c← correlation between Ms and Me ▷ interpret the matrix as vectors to
calculate the correlation, or change evalutation metric, e.g. Frobenius norm

if |c| > C then
return [Ms,Me] ▷ Highly correlated representation

else if ts + 1 < te then
tm ← int(ts/2 + te/2)
L← CreateEffectivePathKernelRec(f, {xi}n−1

i=0 , γ, C, ts, tm)
R← CreateEffectivePathKernelRec(f, {xi}n−1

i=0 , γ, C, tm + 1, te)
return [Ms,Me] ∪ L ∪R ▷ Concatenate lists

Figure 9: Pseudo-code for the Effective Path Kernel formulation.

increase its relative weight as the number of epochs after convergence increases.
Its formulation is given in Figure 9. Both the Path Kernel and Effective Path
Kernel can be straightforwardly implemented in parallel over multiple CPUs (or
multiple QPUs) for the evaluation of f .

B Numerical evidence for the inability of ran-
dom feature kernel techniques in solving the
Gaussian XOR Mixture classification

In [20] the authors demonstrate that a two-layer-depth neural network with
only a small number of neurons can easily outperform kernel methods on the
Gaussian Mixture classification problem, under the assumption that the number
of training data points n→∞ is linearly proportional to the dimensionality of
the data d→∞.

We modify Refinetti’s experiment for the current purposes to show the same
result in a more straightforward way.

We define the two-layer neural network as the function:

fnn(x;W1,W2,W3, b1, b2, b3) = W3 · relu(W2 · relu(W1 · x + b1) + b2) + b3 (41)

parameterized by W1 ∈ Rh×d,W2 ∈ Rh×h,W3 ∈ R1×h, b1, b2 ∈ Rh×1, b3 ∈ R,
where h is the number of hidden neurons per layer (the number of hidden
neurons is here fixed to h = d

√
de). In our setting, we randomly initialize the

weights W1,W2,W3 by sampling the matrix element i.i.d. from a Gaussian of
zero mean and unitary variance. The model is then trained using the gradient-
descent-based algorithm ADAM for a maximum 1000 epochs with learning rate
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0.001 (the model is implemented in Python3 library scikit-learn, with the default
configuration).

We define a random feature kernel machine as:

krf(x,x
′) = 〈φ(x), φ(x′)〉, φ(x) = relu(W · x) (42)

with the activation weights parameterized by W ∈ Rf×d, wi,j ∼ N (0, 1), where
f has been chosen such that the number of parameters of the random feature
kernel is greater that or equal to the number of parameters in the neural network,
thus:

f =
(dh+ hh+ h) + (h+ h+ 1)

d
. (43)

For h = d
√
de we can tightly upper bound f with f < d

√
de + 5. This kernel

function is then fed to a SVM for classification (as implemented in scikit-learn).
We randomly generate the dataset Dd,d′,ε̄,n as detailed in Section 4.1. The

experiment described below consists in comparing the performance of the neu-
ral network classifier with variations of the random feature kernel on the dataset
Dd,3,ε,16d for data point dimensionality d = 4, 8, 12, 16, 20 and noise ε = 0, 0.1, 0.2, ..., 1.9, 2.0.
We keep the number of non-zero features d′ = 3, meaning we are effectively clas-
sifying 3D Gaussian XOR mixtures, with the number of training vectors of the
dataset fixed to be 16d. The dataset is then randomly split 75% in the training
dataset and 25% in the test set. For each dataset, we compare the performances
of the oracle with the performances of the best of 10 randomly initialized neural
networks and the best of 10 random feature kernels. For each dataset specifica-
tion, we repeat this procedure 10 times.

In Figure 10 we set out the results of the above described experiments. It
may be observed that Neural Networks outperform the kernel approach in each
case, with the differential in accuracy increasing with the number of zero-valued
features. Refinetti et al. [20] suggest that this difference in performance is
accounted for by the fact that random feature kernels in high dimension behave
as linear transformations [51].

We have here suggested a complementary interpretation of the results of
such experiments. We have shown that the difference of performance between
the two models is not uniquely determined by the failure of kernel methods per
se. In fact, it is determined also by the feature learning capabilities of neural
networks; inspecting the evolution of the W1 parameters during the training
of a neural network reveals that elements in W1 related to the zero-features
do indeed go to zero (Figure 11). This results in having all of the hidden
neurons (whose number is proportional to

√
d and thus increasing with the

number of features) working adaptively to classify the three discriminatively
informative components or features, thereby improving overall performance in
contrast to the random feature kernel approach, for which adding feature (and
parameters) drastically decreases performance (which is to say the path model
outperforms the random feature kernel in this problem by being able to discharge
junk features candidates, thus performing feature learning).

27



(a) (b) (c)

(d) (e) (f)

Figure 10: Comparison of the performance of Random Feature Kernel and (2
layer) Neural Networks over the 3D Gaussian XOR Mixture problem with an
increasing number of features set to zero. 10a, 10b, 10c, 10d, 10e, 10f have
respectively 4, 8, 12, 16, 20, 24 feature per point, the first three being the only
non-zero ones.

(a) (b) (c)

Figure 11: Values of the W1 matrix for individual neural networks of the form of
Equation 41 during training on the Gaussian XOR Mixture datasetsD24,3,0.8,384:
11a, 11b, 11c represent the coefficients at initialization, after 250 training epochs
and after 750 training epochs of training with ADAM at a learning rate 0.001.
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C Data, Code, and Simulation details

Both the code to reproduce the indicated experiments and also the relevant data
are freely available at https://github.com/incud/QuantumPathKernel. The
code is released open-source.

The indicated experiments have been simulated on two devices:

• one Dell Latitude 5510 having: Intel Core i7-10610U CPU with 4 physical
cores, 16GB RAM, without CUDA-enabled GPUs;

• one cluster node having: Intel Xeon Silver 4216 CPU with 64 physical
cores, 180GB RAM, with 4 x CUDA-enabled GPUs NVidia Tesla V100S
32GB VRAM.

The software runs on Ubuntu 20.04 LTS and uses Python v3.9.11, PiP packet-
manager v22.0.4 along with the other libraries listed in requirements.txt file
in the root of the attached repository. Installation and simulation instructions
are documented in the README.md file in the root of the repository. Our code is
based upon freely available, open-source frameworks only.

The framework used to define and simulate the quantum circuit is PennyLane
[52]. The simulations have been accelerated using the JAX library [53]. (JAX
might require installation from source code if used on operating systems different
from Ubuntu). Alternatively, the source code can be set such that PennyLane
does not require this library. (However, in this case, the circuit simulation might
be substantially slower and would not benefit the full potential of multicore
CPUs and GPUs). These experiments have not been run on quantum hardware.

The input and output of each experiment are contained in different sub-
folders within the root directory. They contain the specifications needed to
generate the training and testing datasets, the datasets themselves, the trace
of the parameters during the training for any model, and the Quantum NTK
and Quantum Path Kernel Gram matrices for each model (which may be used
to create a pre-trained model), and also the resulting plots. The README.md

explains in detail the commands needed to reproduce our results.
The simulations for all experiments have taken approximately 600 hours

across both machines used.
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