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Quantum computing offers a new paradigm for advancing high-energy physics research by enabling
novel methods for representing and reasoning about fundamental quantum mechanical phenomena.
Realizing these ideals will require the development of novel computational tools for modeling and
simulation, detection and classification, data analysis, and forecasting of high-energy physics (HEP)
experiments. While the emerging hardware, software, and applications of quantum computing are
exciting opportunities, significant gaps remain in integrating such techniques into the HEP commu-
nity research programs. Here we identify both the challenges and opportunities for developing quan-
tum computing systems and software to advance HEP discovery science. We describe opportunities
for the focused development of algorithms, applications, software, hardware, and infrastructure to
support both practical and theoretical applications of quantum computing to HEP problems within
the next 10 years.

I. MOTIVATION

The aim of high-energy physics (HEP) is to understand
matter at the most fundamental level. The current un-
derstanding of the building blocks of the universe and
their interactions is embodied in the so-called standard
model (SM) of particle physics. In this model, fundamen-
tal particles are quantum mechanical entities with fixed
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quantum numbers such as mass, spin, electric, and color
charge, and are regarded as excitations of relativistic
quantum fields. While the field of HEP has enjoyed many
decades of progress, a long-standing challenge for both
theorists and experimentalists in HEP is that the prop-
erties and behaviors of perturbative quantum fields are
mathematically complex, present infrared and ultravio-
let divergence challenges, and expansions converge slowly
when the coupling constant is large. Furthermore, the
time evolution of final state particles and their hadroniza-
tion is particularly complex and are difficult to accurately
simulate on digital computers, even on high performance
computer (HPC) systems.

Meanwhile, a new approach to computing that explic-
itly leverages the complexities of quantum mechanics for
computational purposes has been in development. In
the last few years, prototype quantum computers capa-
ble of performing small computations using a few dozen
quantum bits (“qubits”) have become widely accessible,
prompting a burgeoning field of research in applications
of near-term and future quantum computers. Quan-
tum computing (QC) approaches have been developed
and demonstrated for applications in many disciplines
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including chemistry, materials science, nuclear physics,
and HEP. However, the field of QC is far from mature
and the potential of QC for HEP has only begun to be
explored.

In this paper, we highlight some of the significant op-
portunities and challenges for the development of quan-
tum computing systems and associated software to de-
liver unprecedented capabilities for HEP discovery sci-
ence. In Sec. II, we survey current approaches to applying
QC to HEP. In Sec. III, we describe the leading techni-
cal challenges and gaps facing the adoption of quantum
computing for HEP research problems, while in Sec. IV,
we respond with long-term research priorities that will
address these gaps in the coming decade.

II. BACKGROUND

Quantum computing may be viewed as part of the
larger subject of quantum information science and tech-
nology (QIST), which concerns the use of quantum sys-
tems to store, transmit, and process information [1].
QIST involves the precise isolation and control of well-
defined quantum particles and fields. These quantum
physical systems can be used to simulate naturally occur-
ring quantum phenomena (such as quantum chromody-
namics (QCD)) or to solve computational tasks unrelated
to physical phenomena (such as clustering or regression
on a dataset). As will be discussed later in this section,
key concepts in quantum computing such as superposi-
tion, entanglement, and computational complexity have
also provided new, information-oriented ways to address
fundamental questions in HEP.

For the most part, efforts to apply QC in HEP to date
have consisted of adapting established general-purpose
quantum algorithms and tools to HEP-specific tasks.
While most demonstrations have involved only toy prob-
lems, there have been a few demonstrations in which the
quantum computations were competitive with more tra-
ditional methods. Some examples include the simulation
of a full SU(2) gauge theory on a noisy, intermediate-scale
quantum (NISQ) device [2], the training of large-scale
quantum machine learning (QML) models for supernova
classification [3], and the generation of synthetic detector
data [4].

In the United States, much of the work to date ex-
ploring the potential of quantum information science for
HEP has been through the Department of Energy (DOE)
QuantISED program. QuantISED was launched in 2018
as part of the DOE Office of Science (SC) QIS initiative
following a series of community roundtables, pilot stud-
ies, and [5, 6]. The program has relied upon interdisci-
plinary collaboration between HEP and QIS researchers
and partnerships between DOE laboratories, university
consortia, and hardware vendors such as IBM, Rigetti,
and Google. Major topic areas addressed by QuantISED
include:

• Cosmos and qubits: theoretical connections be-

tween cosmic physics and qubit systems that can
be studied in laboratory settings. In particular, the
study of quantum gravity in the context of quan-
tum information has yielded new insights. For ex-
ample, principles of computational complexity and
quantum error correction have helped scientists in-
vestigate the interiors of black holes [7] and whether
gravity emerges from entanglement [8].

• Foundational theory: formulations of gauge the-
ories amenable to simulation on quantum comput-
ers [9].

• Quantum simulation: algorithms for simulat-
ing quantum mechanical systems including scalar
quantum field theories [10], nuclear physics [11],
and other many-body systems [12].

• Quantum computing: quantum-enhanced ma-
chine learning and data analysis for HEP experi-
ments. Developments in this area include: quan-
tum machine learning algorithms [3, 13, 14] and
optimization algorithms for the analysis of collider
data and quantum simulation of field theories [15].

• Quantum sensors: sensors leveraging quantum
information concepts and technologies to yield new
detection capabilities. One advancement in this
area is quantum-enhanced searches for dark mat-
ter [16, 17].

• Quantum technology: advances in QIST and its
integration with HEP technology. Efforts in this
topic include quantum internet [18], noise mitiga-
tion techniques for near-term quantum devices [19],
analysis of the technological requirements for HEP
programs [20], and others.

While there is not space to describe all of these efforts
in detail, recent work relating black hole thermodynam-
ics and quantum information theory exemplifies the kinds
of fruitful connections being developed between QIS and
HEP. A long-standing problem in particle physics is the
so-called “black-hole information paradox”, which con-
cerns the apparent loss of information that occurs when
a particle disappears inside a black hole. The particle’s
information chaotically mixes with all the other matter
and information inside the black hole, generating quan-
tum entanglement between distant regions and seemingly
making it impossible to retrieve. Recent landmark work
[21, 22] suggests that the information passing the event
horizon of a black hole is not lost forever but is eventually
released.

In the field of quantum information, this process of
apparent information loss through widespread entangle-
ment is known as scrambling. A quantum processor can
directly measure the scrambling-induced spread of ini-
tially localized information via the decay of out-of-time-
ordered correlation (OTOC) functions. In [23], the au-
thors realize scrambling behavior in a multi-qutrit sys-
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tem. In [24], a seven-qubit circuit executed on an ion-
trap quantum computer enabled the authors to bound
the scrambling-induced decay of the OTOC measurement
experimentally. These two experiments pave the way
for laboratory investigations of the black hole informa-
tion paradox, something that would hardly be imaginable
without QC.

III. CHALLENGES

The emerging field of QC faces many technical chal-
lenges related to the development of algorithms, software,
hardware, and infrastructure to support HEP research.
In this section, we identify how these existing research
challenges influence on-going efforts to solve key prob-
lems in HEP research using QC. In Sec. III A, we survey
algorithms and applications which are known to apply to
HEP challenge problems, and we identify several key gaps
in extending these methods beyond proof of principle ef-
forts. In Sec. III B, we review how existing computational
tools, including quantum programming methods and nu-
merical simulators, have influenced the accessibility and
adoption of QC for the HEP community. In Sec. III C,
we briefly summarize early efforts in developing testbeds
for experimental QC with a focus on HEP application ar-
eas. Then, in Sec. III D, we discuss some of the broader
infrastructure challenges that face adoption of QC by the
HEP community.

A. Algorithms and Applications

The Hamiltonian formulation of lattice quantum field
theories allows us to use the tools from quantum compu-
tation to solve problems in strongly correlated quantum
systems by understanding the dynamics in terms of quan-
tum circuits or representing the action of a measurement
as a projection in a Hilbert space [25, 26]. Different ap-
proaches in the quantum computation domain for quan-
tum field theories cover subatomic many-body physics
[27, 28], real-time model dynamics of lattice gauge the-
ories [29, 30], self-verifying variational quantum simu-
lation of the lattice Schwinger model [31], Non-abelian
SU(2) lattice gauge theories on superconducting devices
[32], optical abelian and simulations of non-abelian gauge
theories on ultra-cold atoms platforms [33, 34], and sim-
ulation of Z(2) lattice gauge theories with dynamical
fermionic matter [35, 36].

In most of these applications, the limited number of
qubits and gate fidelities available in QC hardware im-
plementations represent bottlenecks for a proper compar-
ison with classical algorithms and, therefore, any assess-
ment of quantum advantage. On the other hand, the
application of QCD with the lattice gauge model [37, 38]
represents an exciting challenge on the real-device imple-
mentation that requires a novel design following quan-
tum device limitations, state-of-the-art classical simula-

tors handling a decent number of qubits to benchmark
the quantum computation algorithms with existing clas-
sical approaches, and the exploration of gravity/QFT du-
ality [26].

From an algorithmic point of view, several challenges
address the exploration of variational quantum algo-
rithms in a higher dimension, design of quantum al-
gorithms beyond the existing hybrid classical-quantum
format with the combination of different strategies to
solve problems in HEP, exploitation of quantum singular-
value-decomposition (SVD) methods for unfolding prob-
lems in HEP, and on-hardware implementation of quan-
tum algorithms to reconstruct Feynman path integrals.

1. Digital and Analog Simulations

Interestingly, digital, analog, and mixed digital-analog
models of quantum computation have been considered
within the context of lattice gauge theories [39, 40]. In
the digital realm the problem of a gauge-invariant prob-
lem formulation is already a non-trivial matter with
quantum-error-correction-like protocols [41] and mani-
festly gauge-invariant formulations [42, 43] having been
considered. After overcoming the first hurdle of problem
formulation the ever-growing set of quantum algorithms,
including quantum phase estimation and linear combi-
nations of unitaries or block encoding, can be used to
compute the various quantities of interest appearing in
the target theory [43–45]. These algorithms seem suit-
able for fault tolerant computation rather than near term
quantum computational models.

Analog approaches have long been taken with synthetic
gauge fields in cold atom simulators being a prime exam-
ple of analog simulation [46]. Analog realizations of gauge
invariant encodings, such loop-string-hadron encoding in
cold atom systems [47], have also appeared. Lastly, with
some modest abstraction one popular near term approach
has been to leverage the natural device physics in order
to augment the conventional digital gate-sets with ana-
log processes [48]. For example, select bosonic vibrational
modes can be used to simulate U(1) gauge variables in
a resource efficient manner [49], e.g., using trapped ion
systems [50].

2. Variational Methods

Generative modeling learns how to generate a distri-
bution by analyzing a known data. The model itself may
then be used to draw additional samples representative of
the distribution. With a quantum processor, preparing
and sampling from arbitrary distributions can be directly
implemented, and there is no need to compute partition
functions which may be intractable. Additionally, using
quantum systems has an attractive scaling characteristic:
a model built on n qubits can potentially prepare and
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sample from a distribution over 2n states, where each
state is a length-n binary bitstring.

In quantum machine learning there is a broad field of
research which includes using classical machine learning
algorithms for studying and simulating quantum systems
[51–53] and using quantum algorithms to implement ana-
logues of classical machine learning algorithms. Many
machine learning applications in HEP leverage generative
modeling [54–57], and the leading model is the generative
adversarial network (GAN). Quantum GAN models [58–
60] have been developed that utilize a trainable quantum
circuit model for the generator network, yet adversarial
training can still encounter mode collapse as with classi-
cal models. However, there are other generative models
that can be constructed with quantum circuits including
quantum Boltzmann machines [61, 62] and quantum cir-
cuit Born machines (and related Ising Born Machines)
[63, 64].

Near-term demonstrations of QML can reach compa-
rable performance with, but have not yet demonstrated
an advantage over, classical machine learning models.
Classical machine learning and deep learning can uti-
lize large, distributed computing clusters to implement
models with millions of parameters. Coupled with par-
allelization, these training workflows dwarf the current
state of the art in quantum machine learning that uses
variational, hybrid algorithms. However, as the size and
capabilities of available quantum devices improve, larger
quantum models can be built and executed. While near-
term demonstrations and applications may not outper-
form classical ML models, their development is essential
for understanding how quantum models learn.

3. Noise Mitigation

The design space associated with quantum generative
models, and parameterized quantum models in general,
is large. Best practices for building parameterized quan-
tum circuit models, in order to effectively prepare and
sample from these distributions, remains an open ques-
tion [65]. Many heuristic approaches abound including:
using sparse parameterizations (single rotation gates in-
stead of arbitrary three angle decompositions) reduces
training overhead, at the expense of trainability; and us-
ing fewer entangling and two-qubit operations can reduce
susceptibility to hardware noise and improve transpila-
tion for sparse hardware connectivity graphs, but at the
expense of the correlations that can be modeled.

Mitigating hardware noise requires efficient noise char-
acterization [66, 67]. Many methods of error mitigation
that rely on regression modeling (e.g. [68]) are focused on
mitigating the effect of noise on expectation values. For
generative modeling and algorithms that use the distri-
bution over all basis states, matrix-based error mitigation
methods have been incorporated into variational training
workflows [69], and scalable error mitigation methods are
an active area of research [70, 71]. These methods are

needed to assess the stability of the quantum devices as
well as reproducibility of the applications [72].

4. Quantum Machine Learning

Modern machine learning (ML) techniques, including
deep learning, are rapidly being applied, adapted, and
developed for HEP applications. ML is currently used
across the different areas of particle physics from col-
lider physics [73–75] to the study of the cosmos [76, 77]
and quantum gravity. ML is also present throughout
the various stages of HEP studies from the simulation
of hypothesized particles [78], in the parameterization of
cross-sections calculated for sensitivity analyses [79], to
the analysis of experimental data [73–75]. Most of these
applications have replaced non-ML methods and tech-
niques and can process experimental data very efficiently.
These methods and techniques have even been deployed
in FPGAs [80] and integrated into the data acquisition
systems for fast selection of information.

More recently, applications at the intersection of quan-
tum computing and machine learning have been explored
to analyze experimental data. The hope is to adapt or
develop algorithms that can efficiently process HEP data.
One example includes algorithms to construct physics ob-
jects amenable to analysis from the signals generated in a
particle detector–i.e., the clustering of detector hits into
so-called tracks for reconstructing a particle’s trajectory
[81–88] or tracks and calorimeter energy depositions into
jets [89–91]. Furthermore, quantum-assisted algorithms
have been explored in unsupervised learning settings to
classify jets according to their origin (b-tagging) [92],
generative tasks [93–95], and the selection of events or in-
teractions along with background suppression [3, 13, 96–
108]. In particular, generative models have been explored
extensively as an alternative for the simulation of particle
interactions and the detector’s response to such interac-
tions [4, 94].

Leveraging quantum computers for machine learning in
HEP has several advantages. In general, quantum com-
puters can operate more efficiently in high-dimensional
tensor product spaces because of quantum superposition,
which is vital for analyzing large-scale and complex HEP
data patterns. Moreover, they can leverage quantum tun-
neling to train machine learning models more efficiently
[109–112]. In some cases, quantum-assisted techniques
have been shown to train on less data than their classical
counterparts. This might be particularly useful in the
context of data augmentation in simulation tasks, where
using a generative model can reduce the resources allo-
cated for traditional ML methods.

Nonetheless, even though the applications of QML to
HEP data are many, there are several challenges associ-
ated with the trainability and deployment of these mod-
els on NISQ devices. For example, the size and com-
plexity of HEP datasets requires an efficient encoding
into quantum states, resulting in a large overhead in
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pre-processing. Many training workflows serially encode
training data and paralellization requiring either multi-
ple devices or large quantum devices that can run mul-
tiple circuits with no cross-talk or interference between
circuits. Furthermore, there is little understanding on
how to tailor ansatz/circuit design for specific applica-
tions and a need for error correction/mitigation tech-
niques that can be scalably constructed and incorporated
into variational training workflows.

B. Software and Compilers

1. Compiling

Improvements in quantum computers, and their sub-
sequent enabling of increasingly nontrivial simulations
of fermionic systems, have pushed the development of
novel encoding of fermionic degrees of freedom. The
commonly used mappings from these degrees of freedom
to that of spin (i.e., the Jordan-Wigner, Bravyi-Kitaev,
or parity mappings) in general lead to largely non-local
spin Hamiltonians and unnecessarily large qubit num-
bers per fermionic mode mapped. These properties dras-
tically compound circuit and measurement complexity
of simulations. Towards countering these expenses, sev-
eral works have shown both general and system specific
mappings that outperform Jordan-Wigner and others in
terms of locality of spin Hamiltonians as well as the num-
ber of fermionic modes per qubit [113, 114].

Although these economic mappings are useful, their
utility in the fault-tolerant era may be overshadowed
by instead using logical fermionic mappings [115–118].
These avoid the overhead associated with fermionic-to-
qubit mapping followed by the cost of error corrected
codes by directly mapping the underlying fermionic sym-
metries to error correcting code spaces. While the bene-
fit is obvious in terms of qubit and gate overhead, such
embeddings require couching fundamental fermionic op-
erations in terms of fault tolerant operations, which will
likely encourage simple, more physically motivated im-
plementations of algorithms and compiling of code.

Explorations of such mappings, and their relative
quantum resource efficiency for gauge-invariant HEP
problems of interest remain an open, but important, first
step. There have been several successful HEP problem
implementations, generally focusing on how to truncate
gauge degrees of freedom while simultaneously satisfying
gauge constraints efficiently [42, 119]. This has paved
the way, similarly to fermionic mappings, for methods
of how to embed HEP simulations natively in error de-
tection and correction schemes [41, 120]. These methods
have so far proven to be very specific to the target models
and its symmetries. Thus the endeavor to find general,
optimal mappings will be essential in the coming years
for scaling up near term HEP simulations into the fault
tolerant era.

C. Experimental Testbeds

The current state of the art for testbed devices con-
sists of quantum processors that contain dozens of qubits.
These machines are capable of circuit depths in the 100s
of gates and up to 1000s of gates in the most advanced
systems. Alternately, algorithms for simulating HEP
problems of interest have been implemented on a com-
parably smaller number of qubits and circuit depths.

Given the current level of noise and imperfection in
practical realizations of quantum computing devices, ef-
ficient numerical simulators capable of running on large-
scale heterogeneous (HPC) platforms will continue to
play an important role in characterization, verification,
and validation of quantum devices, as well as analysis
of the quantum algorithms intended for those devices.
Probing the potential for quantum advantage will re-
quire extensive research and development in classical al-
gorithms for quantum computing simulations in order to
make a true boundary where quantum wins over classical.

An ability to utilize existing and future classical hard-
ware efficiently is another dimension of optimization on
the classical computing side. Furthermore, the HEP-
related quantum simulators will require generalization to
the qudit-based representation of quantum devices and
algorithms. In order to better understand and cope with
the noise and decoherence, analog-level simulations of
open quantum device dynamics will become vital for their
performance optimization. These simulations will require
significant HPC resources coupled with highly optimized
computer codes. Yet another challenge is related to load-
ing classical (or quantum) data to quantum devices–a
problem that can also benefit from advanced quantum-
inspired classical algorithms coupled to large-scale HPC
resources.

D. Instrument and Data Networks

Historically, HEP computing has been performed on
sizeable, purpose-built computing systems. These be-
gan as single-site computing facilities but have evolved
into the distributed computing grids that we use today.
Therefore, integration with current heterogeneous com-
puting resources is needed to accelerate the adoption of
quantum computing technologies within the HEP com-
munity. For example the Fermilab HEP cloud is a portal
to diverse computing resources on local clusters, campus
farms, grid resources, commercial clouds, HPC centers,
and quantum computing resources.

IV. PRIORITIES

A. Algorithms and Applications

With ever increasing numbers of qubits into the hun-
dreds or thousands, while remaining in the NISQ era,
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quantum algorithm research for HEP applications to
improve/overtake classical methods is an important re-
search focus for the next ten years. Quantum computing
for HEP provides a great challenge and important intel-
lectual stimulus for overcoming practical quantum infor-
mation challenges with big data. In addition, quantum
computing for simulating lattice gauge theories provides
both motivation and a framework for interdisciplinary
research towards developing special-purpose digital and
analog quantum simulators, and ultimately scalable uni-
versal quantum computers.

Another potential area that may yield quantum ad-
vantage involves processing the large data sets result-
ing from detected events. For instance, simulations and
on-hardware implementations for the unfolding problem
can exploit both quantum generative modeling as well as
singular value decomposition. Recent advances also en-
abled light-front encoding of relativistic fields and sub-
sequent simulation with variational methods [121, 122].
Encoding techniques allow for large simulations to be
mapped onto relatively few qubits via the Lie algebraic
method to reduce simulation complexity via gauge in-
variant and sub-sector encodings pertaining to a symme-
try [123], while computing the quantum gradient on the
Reimannian manifold allows for increased circuit depths
when complexity reductions have been maximized. Ap-
proaches beyond the current hybrid quantum-classical
paradigm, which combine efficient quantum algorithms
with classical distributed algorithms, may also benefit
HEP applications.

1. Variational Algorithms

One advantage to using quantum models for statistical
learning tasks is that with n qubits, one can build a pa-
rameterized model that can efficiently prepare arbitrary
distributions over 2n states. The development of QML
models for HEP applications can provide insight into how
data can be efficiently transformed in high-dimensional
probability spaces. The challenges for these approaches
to quantum computing can be organized into two areas:
designing circuit ansatz models that can efficiently trans-
form data into high-dimensional quantum Hilbert spaces,
and building scalable training methods that can optimize
these models in noisy landscapes.

Many state of the art quantum algorithms in the HEP
application space that can be deployed on near-term
hardware are variational algorithms: these are hybrid
workflows that utilize quantum and classical processors
to train parameterized quantum models. Training a vari-
ational model is a non-convex optimization problem, and
the training task can be NP-hard [124]. In classical ma-
chine learning, gradient-based training methods can be
scaled to large-scale applications in non-convex and con-
vex optimization, and efficient training of deep learning
models has been facilitated through the use of backprop-
agation. Analogous methods for variational workflows

have been developed [125, 126], but have not been demon-
strated yet on hardware.

Currently, gradient-based and gradient-free optimiza-
tion are the leading approaches to training. Gradient-
based training is predicted to improve convergence [127],
yet developing gradient-based optimization routines that
can effectively incorporate queue-based access to quan-
tum hardware should be a priority for near-term research.
As the number of parameters in a circuit increases, and
the number of qubits in the register increases, effective
scheduling of the experiments that are needed in order
to execute one step of an optimization method is needed.
Hardware access which allows for job batching (where a
set of experiments sent by a single user are executed and
results are returned as a single group) can facilitate effi-
cient training. With batched jobs, it may be possible to
execute all circuits needed for one optimization step, ei-
ther evaluation of the loss function gradient (e.g. for gra-
dient descent [128–130]), executing a direct search (e.g.
for particle swarm [131] or coordinate descent [4]), or for
gradient approximation (e.g. using finite differences or
SPSA [132]). Additionally, a larger number of shots are
needed to efficiently sample from n-qubit states.

2. Noisy Algorithms

The challenges of effective state preparation, circuit
training in noisy landscapes are not mutually exclusive.
One observed effect of hardware noise is the loss land-
scape flattening and the existence of “barren plateaus”
[133, 134]. In a flattened landscape, the efficacy of
gradient-based training will be reduced. However, the
impact of barren plateaus can be mitigated with circuit
ansatz and cost function design [135–137].

There are a diverse set of error mitigation methods
developed for short depth circuits [138]. But highly ex-
pressible variational models may not be short depth and
variational training is not guaranteed to prepare well-
verified states. An alternate approach to error mitiga-
tion is to use matrix-based methods where sparse lin-
ear filters are used to reduce spurious counts in prepared
states. Matrix-based error mitigation methods can be
incorporated into variational training methods as a data
post-processing state, as the added cost of preparing the
linear filter.

3. Machine Learning Algorithms

The known challenges for quantum machine learning
(QML) in the HEP application space can be organized
into three areas: embedding data into quantum Hilbert
spaces, training quantum models in noisy landscapes,
and working with quantum data. Currently, the capabil-
ities in classical distributed computing make it unlikely
that a quantum advantage will be observed with classical
data, or classical representations of quantum data, using
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QML models deployed on near-term hardware with <
100 qubits. However, the development of QML models
for HEP applications can provide insight into how data
can be efficiently transformed in high-dimensional prob-
ability spaces.

These three challenges are not mutually exclusive. For
example the challenges of training quantum models are
encountered irrespective of the data source (classical
data, classical representation of quantum data, or quan-
tum data). Examples of how challenges of embedding
data can manifest: finding low-dimensional representa-
tions of classical data into qubit registers, or high-fidelity
transmission of quantum data from sensors to qubits used
for QML. In addition to these, it is important in QML to
explore purely quantum approaches for both training and
inferencing, i.e. approaches that are not hybrid in na-
ture (such as variational approaches). Working with the
NISQ-era machines in the near-term, it is also important
to explore quantum error-correction and error-mitigation
subroutines specific to QML circuits used in HEP. From
a logistical point of view, accessing quantum computers
requires better scheduling policies and remote access pro-
tocols. Lastly, today’s quantum computers are noisy and
error-prone—this severely limits our ability to work with
large-scale data reliably. In this regard, it is important
to build fault tolerant quantum computers that are also
scalable.

B. Software and Compilers

As discussed in Sec. III A and Sec. IVA, hybrid quan-
tum algorithms, such as those based on variational prin-
ciples, have emerged as a promising candidate for quan-
tum computational advantage in HEP areas, especially in
the Noisy Intermediate-Scale Quantum (NISQ) era [139].
The iterative nature of these algorithms necessitates a
tight integration of quantum hardware with classical
computing resources. For instance, the execution time
of quantum circuits that involves a variational param-
eter loop has been shown to be dominated (more than
90% [140]) by classical computing procedures for com-
pilation, control, and data transfer. As quantum com-
puting capabilities mature, software infrastructures for
compilation and control will necessarily need to improve
in order to utilize the full computing power of heteroge-
neous quantum-classical resources for handling practical
applications.

We envision the need for system-level and hardware-
agnostic compiler toolchains akin to those we have to-
day for classical computing - extensible, modular sys-
tems with unified intermediate representations that en-
able a wide array of optimization and code-generation
techniques for multiple source languages or target ar-
chitectures [141]. The most important aspect of any
compilation toolchain design is the Intermediate Repre-
sentation (IR), which is how code is represented in the
compiler. A standardized, robust, and forward-looking

quantum-classical IR is, therefore, an essential step to-
wards ensuring full interoperability within the quantum
software ecosystem, promoting contributions from broad
communities, and enabling optimization and transforma-
tion of quantum programs that we discuss in detail in the
later point.

For instance, multiple community-led efforts [142, 143]
in the field have coalesced around the idea of leverag-
ing existing classical compiler infrastructures, like the
LLVM, for quantum computing. The approach ensures
the low-level coupling of quantum computation with clas-
sical computing resources and also supports integration
with classical languages and tools readily available in
those compiler toolchains. For example, the Quantum
Intermediate Representation (QIR) Alliance [143] is an
open-source community within the Linux Foundation fo-
cusing on enabling an LLVM-based IR specification for
quantum computation (QIR), as well as developing tool-
ing around this unified representation. Oak Ridge Na-
tional Laboratory is a founding member of this orga-
nization along with several industry players, including
Microsoft, Quantinuum, Rigetti, and Quantum Circuits
Inc. Importantly, by leveraging LLVM for quantum com-
pilations we could also benefit from its powerful tools,
especially the Multi-Level Intermediate Representation
(MLIR) [144] library, which is designed for heteroge-
neous hardware and domain-specific languages analogous
to that of quantum-classical computing paradigm. In
this regard, we have successfully demonstrated a proto-
type compiler toolchain, QCOR [145], capable of compil-
ing the novel OpenQASM version 3 [146] quantum pro-
gramming language to LLVM IR adhering to the QIR
specification adopting the multi-stage, progressive low-
ering approach of MLIR. This compilation technology is
specifically relevant to many HEP application use cases
whereby the algorithmic procedure is best captured by
high-level domain-specific descriptions, such as analog
and digital quantum simulation.

An essential feature of compiler toolchains is the ability
to apply transformations on the IR to improve execution
quality, e.g., code’s runtime or the computing resources
required, while preserving the semantics of the input pro-
gram. In compiler technology, such transformations are
often called passes since they can be assembled into a
pipeline of passes each of which processes the IR and
applies its transformation rule.

In the NISQ era of quantum computing, compiler
passes that implement circuit simplification and efficient
hardware topology mapping are indispensable to any
quantum software stack. A broad variety of techniques
have been developed quantum circuit simplifications at
the gate level, such as those based on ZX-calculus [147,
148], template-based [149] or peep-hole [150] optimiza-
tions. Similarly, various circuit-to-hardware placement
methods have been developed to minimize the number of
qubit swapping operations [151, 152] required or to max-
imize circuit execution fidelity by mapping the circuit to
best-performing qubits [153].
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For dynamical Hamiltonian simulation algorithms that
are particularly relevant to HEP applications, tech-
niques such as advanced term splitting [154] and order-
ing [155, 156] or algebraic circuit compression [157] can
also be incorporated as optimization passes targeting the
high-level description of the quantum algorithms where
algorithmic semantics of the program are expressed. In
this respect, a quantum compiler infrastructure that sup-
ports a hierarchy of abstractions, such as the MLIR, is
highly desirable since it can retain high-level algorith-
mic information in the IR which compiler optimizers can
reason [158].

As quantum computers evolve into fault-tolerant ma-
chines, the associated software infrastructure will also
need to be upgraded in order to handle quantum er-
ror correction protocols [159]. Specifically, we envision
that quantum programs would always be expressed in
terms of logical operations whose corresponding physical
qubit level instructions incorporating a target-dependent
quantum error correction code are compiled by a com-
piler software infrastructure [160]. In this regard, quan-
tum compilers leveraging classical computing technol-
ogy, such as LLVM, would be best suited to perform-
ing this logical-physical transformation thanks to their
ability to incorporate a variety of classical comput-
ing resources required by the error decoding and cor-
rection protocol, e.g., minimum weight perfect match-
ing [161] or maximum likelihood decoding [162] for sur-
face code [163]. Furthermore, as quantum programming
languages move towards this fault-tolerant paradigm
whereby qubit measurement-based control flow is inter-
twined with that of conventional computing for classical
data, we can leverage the vast amount of IR optimization
capability from the LLVM infrastructure to handle com-
mon classical optimization passes like function inlining
or loop unrolling. While these optimization passes are
intrinsically classical, they help unlock many quantum-
related simplification patterns which would otherwise be
obscure to the quantum optimizer due to the complex
nature of the IR tree with control flows.

1. Encodings

The HEP-specific encodings discussed in section II are
an important first step to solving gauge-invariant HEP
problems of interest in a resource-efficient way. Explo-
rations of such mappings, and their relative quantum re-
source efficiency for gauge-invariant HEP problems of in-
terest remain an open, but important first step. There
have been several successful HEP problem implementa-
tions, generally focusing on how to truncate gauge de-
grees of freedom while simultaneously satisfying gauge
constraints efficiently [42, 119]. This has paved the way,
similarly to fermionic mappings, for methods of how to
actually embed HEP simulations natively in error detec-
tion and correction schemes [41, 120]. These methods
have so far proven to be very specific to the target mod-

els and its symmetries. Thus the endeavor to find gen-
eral, optimal mappings will be essential in the coming
years for scaling up near term HEP simulations into the
fault tolerant era. Comparing these methods to general
fault tolerant encodings for universal QC will yield in-
sight into the efficacy of building custom machines ded-
icated to HEP problems which implement custom en-
codings in hardware rather than reconfigurable devices
capable of universal operations.

2. Numerical Simulators

Since numerical simulators will continue to play a vi-
tal role in quantum device verification and validation as
well as in quantum algorithm analysis [164, 165], the rele-
vant research priorities are concerned with scaling numer-
ical simulation techniques towards larger NISQ devices
as well as improving their ability to faithfully reproduce
the behavior of actual quantum hardware via more accu-
rate noise models, in particular proper modeling of the
multi-qubit cross-talk [166]. In turn, devising more accu-
rate noise models will require further research and devel-
opment in scalable approaches for modeling open quan-
tum system dynamics coupled with either a Markovian or
non-Markovian bath. Further research related to simula-
tions of multi-level qudit systems at their native Hamil-
tonian level will be necessary for assessing their com-
putational power as compared to the qubit-based quan-
tum devices. Pulse-level simulations, optimal quantum
control, and quantum gate implementation optimization
will form another direction of simulation heavy research
and development efforts. More efficient numerical tensor-
algebraic techniques coupled with advances in classical
machine learning will be required for scalable character-
ization of larger NISQ devices. On the engineering side,
all these newly devised numerical simulation techniques
will have to be implemented in an efficient manner in
order to fully exploit the computational power of Exas-
cale HPC platforms which are becoming widely available
worldwide [159, 167–169].

C. Experimental Hardware

1. Testbeds

It is in the interest of the HEP community to build spe-
cialized devices to address the above application needs.
For example, multiple platforms offer analog-level opera-
tions to users (ie, pulse controls). In many scenarios, ac-
cess to lower level, analog operations allows for higher ac-
curacy in quantum simulation problems. Further, hybrid
analog-digital simulations have shown increased accuracy
in field theory problems for scattering calculations [170].
Currently, HEP programs - especially those in the Quan-
tISED program in the US - utilize testbeds around the
world, including the DOE-supported testbeds consisting
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of trapped ion and superconducting devices, to solve pro-
totypical problems of interest in the field. For example,
the information scrambling problem [23] has been demon-
strated on superconducting hardware [171], while varia-
tional methods for solving problems using the light-field
encoding has been mapped onto trapped ion platforms
[172]. Uncovering the most useful aspects of the testbeds
in these demonstrations will help us discover the most im-
portant ingredients for testbeds that support HEP goals.
In particular, the "close to the metal", analog controls
were a defining factor in these demonstrations.

In the NISQ era, fully analog systems will also be
useful for implementing complex Hamiltonians for which
digital, prefault-tolerant platforms do not support suf-
ficient circuit depth. Hamiltonians for problems of in-
terest can be mapped to trapped ion systems’ mo-
tional mode degrees of freedom, or the spin-spin cou-
pling present in neutral atom, quantum dot, or other
platforms which support both analog spin-spin coupling
and tunable transverse fields. In the future, when digital
platforms move closer to fault tolerance, direct fermionic
(HEP problem-specific) encodings should be supported
in custom testbeds. These encodings ensure that the re-
sources required in a given testbed required to represent a
specific HEP problem are far fewer than that required for
general purpose, universal quantum simulation. A cus-
tom, fault tolerant fermionic code may not be suitable to
simulate Boson sampling, for example, but it would be
ideal for simulating scattering in fermionic field theories.

2. Analog Simulators

While digital quantum computers scale to the extent
needed for fault tolerant quantum computations, analog

quantum simulators are beginning to push state of the
art, for example probing topological spin liquids on a
programmable device at a scale not previously observed
on neutral atom-based simulators [173–175]. Analog neu-
tral atomic physics supplements photonic, superconduct-
ing, trapped-ion, and many more analog modalities which
currently exist. There has also been recent research in-
terest in exploring digital-analog computational modal-
ities (in which hard operations are done in an analog
fashion and digital operations play a complimentary sup-
porting role, e.g. providing local basis transformations)
and their application to HEP (and related condensed-
matter) models as discussed in the previous section. De-
spite this promise, developing current analog methodolo-
gies to solve substantially more complex HEP domain
problems is a research avenue in its own right.

3. HEP-dedicated Testbeds

For HEP, an open and relevant question is whether
quantum computers can efficiently simulate quantum
field theories (QFT). QFT encompasses all fundamental

interactions, possibly excluding gravity. The simulation
of QFT has HEP applications related to event generators
for quantum chromodynamics (QCD) simulations of nu-
clear matter. Outside HEP, it might find applications in
the simulation of strongly coupled theories and the char-
acterization of the computational complexity of quantum
states.

Nonetheless, the simulation of quantum field theories
is not a trivial task due to the sign problem. In physics,
the sign problem is encountered in calculations of the
properties of a quantum mechanical system with a large
number of strongly interacting fermions or QFTs involv-
ing a non-zero density of strongly interacting fermions.
Since the particles are strongly interacting, perturbation
theory is inapplicable, and one is forced to use brute-force
numerical methods. The sign problem is one of the ma-
jor unsolved problems in the physics of many-particle sys-
tems, limiting progress in nuclear physics, preventing the
ab initio calculation of properties of nuclear matter, and
limiting our understanding of nuclei and neutron stars.
In quantum field theory, it prevents the use of lattice
QCD [176] to predict the phases and properties of quark
matter [177].

An exciting and promising alternative to the simula-
tion of QFT is based on the idea of adiabatic quantum
computation (AQC) [178, 179]. In general, AQC is as
powerful as universal quantum computation when a non-
stoquastic Hamiltonian is used [180], which is the case
of Hamiltonians dealing with the sign problem. One of
the critical aspects of AQC is quantum annealing [181],
which is a metaheuristic algorithm to solve combinato-
rial optimization problems by changing the parameters
adiabatically or even non-adiabatically. Measurements
on currently available quantum annealers are done only
on the standard computational basis [182]; thereby, the
Hamiltonian is stoquastic.

Thus, a quantum testbed that fully realizes or ex-
ploits the power of AQC is needed to show that quantum
speedup can be achieved when non-stochastic Hamilto-
nians relevant to HEP are used. Some models expe-
riencing first-order and second-order phase transitions
using non-stoquastic Hamiltonians have been proposed
and have demonstrated a quantum speedup [183]. This
natural and efficient way to simulate QFT on a quan-
tum testbed will eliminate the need to reformulate HEP-
relevant Hamiltonians (such as QCD) to fit a finite-
dimensional Hilbert space amenable to circuit implemen-
tations.

Formulating the future of QCD studies as relying on
a successful implementation of AQC provides an alter-
native to collider experiments, where large statistics are
needed to understand rare processes. If we can simulate
the QCD Hamiltonian we can study some observables in
the context of information theory. For example, under-
standing the probabilistic parton distribution in terms of
entangling entropy [184]. In other words, in a collider
experiment we have access to a probability distribution
by collapsing the wave function to one of the states, by
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using a quantum-mechanical simulation we have access
to the full density matrix.

D. Infrastructures, Platforms and Data Networks

1. Software Development Frameworks, Benchmarks, and
Optimisation

The HEP community has developed over the years
a broad range of algorithms and methods for different
applications, from optimization to simulation and ma-
chine learning. Initial work on developing and assessing
quantum equivalents of common algorithms have pro-
duced valuable insight [185]. However, the performance
of NISQ systems is still limited and full advantage is ex-
pected only once reasonable fault tolerant devices will
become available. To fully exploit the potential of quan-
tum algorithms, software and hardware systems should
be designed as part of co-development efforts across the
HEP and quantum computing science and engineering
communities. Experience in the classical domain shows
that innovation in hardware technology, readily available
to software and algorithm experts, can boost the devel-
opment of new software stacks and algorithms that, in
turn, produce critical feedback to hardware development
in a virtuous cycle. Examples include hardware-aware
compiler optimization, design of application-aware hard-
ware architectures (i.e. systems dedicated to accelerating
quantum simulations) and so on.

A fundamental component of measuring the progress
and impact of quantum algorithms is the establishment
of open benchmarking frameworks and platforms where
different combinations of algorithms, software and hard-
ware architecture can be tested, and the results published
as a means of establishing baselines for further develop-
ment. Such benchmarks can form the base for the devel-
opment of common software tools and interfaces with an
increasing level of abstraction and platform neutrality as
typical today for classical computing resources.

As an example, in 2021, CERN launched the ABAQUS
project with the objective to build an open, easily acces-
sible platform for researchers to become familiar with dif-
ferent quantum computing architectures and tools, pro-
duce or get access to benchmarks over different met-
rics, and build a community database of knowledge of
the applicability of quantum algorithms to HEP work-
loads. There are specific aspects that need to be inves-
tigated and studied. For example, there are easier sim-
ulations that are only polynomially hard, such as tensor
networks with limited entanglement or limited number of
non-Clifford gates that scale polynomially in the number
of Clifford gates, but exponentially in the number of non-
Clifford gates. It needs to be understood how to adapt
and employ these simplifications.

2. Heterogeneous Computing Networks

When dealing with the quantum computing paradigm,
the role of infrastructure deserves a particular attention.
Quantum computing should not over time require sep-
arate computing infrastructures, application platforms,
or languages, but must be integrated into the existing
cloud-based physical and software infrastructure of to-
day and enable the deployment of hybrid, heterogeneous
workloads where the quantum processing units (QPUs)
are part of a broad range of accelerators. Presently classi-
cal resources can reliably store, manage and process huge
quantities of data, while quantum devices are expected
to efficiently explore high-dimensional spaces to extract
insights and identify optimal answers.

The development and deployment of such hybrid in-
frastructures is currently happening across a series of
steps. As current NISQ resources are limited in avail-
ability and efficiency, experience is built by simulating
quantum algorithms and building noise mitigation strate-
gies on testbeds of classical resources of increasing scale.
Since memory requirements double for every qubit added
in the simulation and quickly hit an exponential wall,
simulation of large scale systems can be performed by
means of distributed and parallelised computation across
HPC clusters of CPU/GPU. Novel architectural frame-
works to integrate quantum capabilities APIs in cloud
architectures are also emerging [186].

At the same time, it is critical to start building paths to
architecture optimization of hybrid resources, workload
splitting and hybrid algorithms, scheduling, data flows,
and circuits transpilation processes. Looking at hybrid
models of variational classifiers, reinforcement-learning
optimisation algorithms, quantum-classic GAN models
for simulation, the infrastructure is evolving rapidly to
make the classic and quantum interaction more effi-
cient, defining containerised modules to be tested on dis-
tributed HPC environments and loaded on real quantum
computers. This will need to be achieved by integrat-
ing HPC and quantum computing strategies as part of
national and international initiatives.

One example of how such integration may be addressed
is the Quantum Computing User Program (QCUP) at
the Oak Ridge Leadership Computing Facility, a US De-
partment of Energy user facility operated by Oak Ridge
National Laboratory [187]. QCUP offers access to a di-
versity of quantum computing systems following merit-
based review of user proposal for demonstrate scientific
applications. In addition, these users are capable of in-
tegrating their quantum computing workflows alongside
conventional HPC systems. As quantum computing tech-
nology matures, this setting will offer a natural means by
which to integrate quantum computing and conventional
HPC systems for purposes of advanced computation.
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3. Quantum Data Networks

A particular aspect of future Quantum/HPC infras-
tructures is the role of quantum data networks. To-
day quantum computing and quantum communication
are usually handled as related by separate fields of appli-
cations of quantum technologies. However, quantum in-
frastructures, time and frequency distribution networks,
and the development of quantum data technologies will
play a fundamental and transformative role in physics ex-
periments at different energy regimes (for example stan-
dard reference signals for anti-matter and low-energy ex-
periments, such as ASACUSA and ALPHA, using high-
precision laser spectroscopy [188]).

Many national and international initiatives are being
deployed to build future quantum networks and the HEP
community must remain an active part of this develop-
ment as it was at the beginning of the century in the
development of distributed grid and cloud networks.

4. International Collaborations and Co-Development

The HEP community is distributed over the whole
globe and the collaboration across institutes has always
played a fundamental role in pushing the limits of science
and technology. For example the development and oper-
ation of the Worldwide LHC Computing Grid (WLCG)
was and still is instrumental for joint progress and em-
ploying all brain power wherever located in the world.

The same approach needs to be taken in the develop-
ment of future quantum infrastructures, Synergies be-
tween the Snowmass exercise and equivalent discussions
in the European Particle Physics Strategy and other
similar initiatives will be critical. Joint R&D projects,
testbeds, progressive development of common frame-
works and tools across US Quantum Information Sci-
ence institutes, the CERN Quantum Technology Initia-
tive [189], DESY QUANTUM, and many other national
and international initiatives in EU and other countries
will accelerate the development and adoption of quan-
tum computing across the HEP community. In the same
way, attention should be given to co-development not
only across HEP, but also between HEP institutes, indus-
try, and other scientific disciplines, such as Astrophysics,
Cosmology, Earth Observation, Climate research, Con-
densed Matter, Chemistry, Biology, and many more. Of-
ten very similar challenges appear in different disciplines
and can be solved with one solution.
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