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Quantum machine learning offers a promising advantage in extracting information about quan-
tum states, e.g. phase diagram. However, access to training labels is a major bottleneck for any
supervised approach, preventing getting insights about new physics. In this Letter, using quan-
tum convolutional neural networks, we overcome this limit by determining the phase diagram of
a model where analytical solutions are lacking, by training only on marginal points of the phase
diagram, where integrable models are represented. More specifically, we consider the axial next-
nearest-neighbor Ising (ANNNI) Hamiltonian, which possesses a ferromagnetic, paramagnetic and
antiphase, showing that the whole phase diagram can be reproduced.

Introduction. Quantum machine learning (QML) [1],
where parametrized quantum circuits [2] act as statistical
models, has attracted much attention recently, with ap-
plications to natural sciences [3–8] or in generative mod-
eling [9–13]. Even if QML models benefit from high ex-
pressivity [14] and demonstrated superiority over classi-
cal models in some specific cases [15, 16], it is still unclear
what kind of advantage could be obtained with quantum
computers [17] in the era of deep neural networks.

Quantum data, on the other hand, could be a natu-
ral paradigm to apply QML, where quantum advantages
have already been demonstrated [18]. There is hope that
quantum data could be collected via quantum sensors
[19], and eventually directly linked to quantum comput-
ers. In this Letter, we emulate the possibility of working
with quantum data by constructing them directly on a
quantum device. We use a variational ground state solver
to obtain approximations of the true ground states in or-
der to mimic noisy real world data. Specifically, this
Letter addresses the computation of the phase diagram
of the ground states of a Hamiltonian H using a super-
vised learning approach. Even if similar problems have
already been explored for the binary case [20, 21], with
multiple classes [22] and computed on a superconducting
platform [23], all of these approaches suffer from a limi-
tation by construction, a bottleneck. In fact, since labels
are needed for the training, and because they are com-
puted analytically or numerically, these techniques can
only speed up calculations, but cannot extend beyond
their validated domain. Alternatively, anomaly detec-
tion (AD), an unsupervised learning technique, has been
proposed [24, 25] as a way to bypass this bottleneck, by
finding structure inside the data set. However, AD can
only obtain qualitative, possibly unstable, results and the
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performance can therefore be difficult to assess. Instead,
the proposed approach provides a clear prediction for the
boundaries of the adopted model, with the possibility to
evaluate the performance on a validation set.

This Letter numerically demonstrates that QML can
make predictions to regions where analytical labels do
not exist, after being only trained on easily computable
subregions. Moreover, QML only needs very few training
labels to do so, as already pointed out by Caro et al.
[26] and Banchi et al. [27]. In particular, we make a step
toward an out-of-distribution generalization [28], where
the training and testing set do not belong to the same
data distribution, which is known to be a difficult task
[29]. This drastically changes the perspective, extending
QML capabilities to extrapolate and eventually discover
new physics when trained on well-established simpler
models.

The model. We consider the axial next-nearest-neighbour
Ising (ANNNI) model

H = J

N∑
i=1

σixσ
i+1
x − κσixσi+2

x + hσiz, (1)

where σia are the Pauli matrices acting on the ith spin,
a ∈ {x, y, z}, and we assume open boundary conditions.
The energy scale of the Hamiltonian is given by the
coupling constant J (without loss of generality we set
J = 1), while the dimensionless parameters κ and h ac-
count for the next-nearest-neighbor interaction and the
transverse magnetic field, respectively. We restrict our-
selves to κ ≥ 0, h ≥ 0 and even N . The difference
of sign between the nearest and next-nearest interac-
tions, leading to a ferro- or antiferro-magnetic exchange
in the system, is responsible for the magnetic frustra-
tion. Thence, the ANNNI model offers the possibility
to study the competing mechanism of quantum fluctua-
tions due to the transverse magnetic field and frustration.
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The phase diagram of the quantum model at T = 0K
temperature has been studied mainly by renormaliza-
tion group or Monte Carlo techniques in d dimensions
exploiting also the correspondence with the classical ana-
log in d + 1 dimensions [30–35]. The phase diagram is
quite rich and three phases have been confirmed, sepa-
rated by two second-order phase transitions. The first,
for low frustration (κ < 0.5) of the Ising type separates
the ferromagnetic and the paramagnetic phases along the

line hI(κ) ≈ 1−κ
κ

(
1−

√
1−3κ+4κ2

1−κ

)
. The other one of

a commensurate-incommensurate type appears between
the paramagnetic phase and an antiphase for values of
the field hC(κ) ≈ 1.05

√
(κ− 0.5)(κ− 0.1), in the high

frustration sector (κ > 0.5). As usual, the paramag-
netic phase is the disordered one, in contrast with the
two ordered phases: the ferromagnetic and the antiphase
one. In particular, they are different because the for-
mer is characterized by all the spins aligned along the
field direction, and the latter has a four-spin periodicity,
composed of repetitions of two pairs of spins pointing
in opposite directions. The point κ = 0.5 represents a
multicritical point.

We mention here that other relevant lines have
been numerically addressed but not confirmed.
One signaling an infinite-order phase transition of
the Berezinskii–Kosterlitz–Thouless (BKT) type for
hBKT (κ) ≈ 1.05(κ − 0.5), delimiting a floating phase
between the paramagnetic and the antiphase [34], and a
disorder line where the model is exactly solvable known
as the Peschel-Emery (PE) line hPE(κ) ≈ 1

4κ−κ [33, 36].

Variational state preparation. The purpose of the
variational quantum eigensolver (VQE) [37] is to calcu-
late the ground state energy of a Hamiltonian H(κ, h)
on a quantum computer. Using the Rayleigh-Ritz
variational principle, the VQE minimizes the energy
expectation value of a parametrized wavefunction and
has been successfully applied in quantum chemistry
[38–40], in nuclear physics [41–43] or in frustrated
magnetic systems [44, 45]. Here, we are interested in the
final eigenstates, represented by an ansatz |ψ(θ;κ, h)〉, to
be used as quantum data. Typically, the ansatz is chosen
as a hardware-efficient (HEA) quantum circuit [38, 46],
which is built with low connectivity and gates that
can be easily run on noisy intermediate-scale quantum
(NISQ) [47] devices. For instance, we use D = 6(9) rep-
etitions of a layer consisting of free rotations around the
y axis Ry(θ) = e−iθσy/2 and controlled-NOT (CNOT)
gates with linear connectivity CXi,i+1 for 0 ≤ i < N
[48], for N = 6(12) spin systems. The optimization
is performed using the gradient-descent-based ADAM
algorithm [49], with an initial learning rate of 0.3 and a
parameter recycling scheme to improve the convergence
[50]. Moreover, we note that the VQE can also be used
to recursively compute excited states [51], which we used
to show that the ground states of the ANNNI model are
only degenerate at the boundaries in the phase diagram,

where the ground states corresponding to the different
phases are competing, excluding the bit flip symmetry at
h = 0. Finally, we asses the accuracy of the VQE states
by comparing with the exact energy and observe that
the relative error ratio is always below 1%. Moreover,
it seems that the energy accuracy distribution is able
to reveal the Peschel-Emery line, since the predicted
energy values are more accurate along it. More details
about the implementation, optimization, degeneracy
and accuracy can be found in Appendix A.

Quantum convolutional neural networks (QCNNs).
QCNNs are a class of quantum circuits, inspired by
classical convolutional neural networks (CNN) [52],
originally proposed in [20]. The QCNN is trained to
detect quantum phase transitions, effectively learning an
observable O(θ) that linearly separates two states |ψA〉
and |ψB〉 from two different phases A and B, such that
〈ψA|O(θ)|ψA〉 < 0 < 〈ψB |O(θ)|ψB〉 [53], which exist
since the phases in the ANNNI model are not topologi-
cal. Intuitively, non topological phases of matter exhibit
macroscopic differences, which can be captured by the
variational observable O(θ). In principle, quantum phase
detection could be performed by measuring different
string order parameters (SOPs) [20]. However, the
SOP vanishes near the phase transition, thus requiring
exponentially many samples for the classification. On
the other hand, the QCNN output is much sharper,
therefore reducing the sample complexity. This changes
quantum phase detection to the task of designing and
training an appropriate ansatz.

In our implementation, the QCNN starts with a free
rotation layer around the y axis, followed by blocks
consisting of convolutions, free rotations, and pooling
layers that halve the number of qubits to k until
k = dlog2 (K)e, where K it the total number of quantum
phases. Finally, a fully connected layer and measurement
are performed in the computational basis. An example
with N = 6 qubits is shown in Figure 1 where we

have free y axis rotations (yellow), R(~θ) =
⊗N

i=1Ry(~θi),

two-qubit convolutions (light green) C(θ) =
⊗2

i=1Ry(θ),

pooling (red) P (~θ, φ, b) = Ry(~θb)Rx(φ) with
b ∈ {0, 1} the value of the measured qubit, and
a two-qubit fully connected (dark green) gate

F (~θ(1), ~θ(2)) =
(⊗2

i=1Ry(~θ
(i)
1 )Rx(~θ

(i)
2 )Ry(~θ

(i)
3 )
)

CX1,2.

QCNNs have been shown to be resistant to barren
plateaus [54] due to their distance from low T2 design
and are therefore good candidates for any quantum
learning tasks. The analogy with CNN holds in the
quantum settings since convolution and pooling layers
are functions of shared parameters and the reduction of
the circuit’s dimension is guaranteed by the intermediate
measurement. The whole algorithm flow starts with
the QCNN taking as input ground states |ψ(θ;κ, h)〉
from the Hamiltonian family H(κ, h), obtained through
the VQE. The quantum network then outputs the
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Figure 1: Circuit architecture: VQE states (blue) are
the input of the quantum convolutional neural network
composed of free rotations R (yellow), convolutions C
(light green), pooling P (red), and a fully connected

layer F (dark green).

Figure 2: Fidelity between the ground states of the
ANNNI model at h = 0.3 and N = 12. We observe three

different cluster, corresponding to the ferromagnetic,
paramagnetic, and antiphase, respectively.

probability pj(κ, h) of being in one of the K = 3 phases
(ferromagnetic, paramagnetic or antiphase), where
pj(κ, h) is computed as the probability of measuring the
state |01〉 , |10〉 , |11〉 on the two output qubits. Since the
phase diagram of the ANNNI model only contains three
phases, the state |00〉 is interpreted as a garbage class.

Generalization.

The main contribution of this Letter is to demonstrate
the ability of QCNN to work in a partial supervised
approach and thus get closer to an out-of-distribution
generalization by training on a set of easily available
labels. We first argue that this generalization is expected
to hold according to [27] if the ground states of the
ANNNI model are clustered, i.e., if the fidelity between
states in the same phase is high [55–57], while being
low between different phases. This is indeed the case as
shown in Figure 2 along the line h = 0.3 for the N = 12
spin case. Even if the requirements of the generalisation
results from [26] do not hold since the training data

are only located on the boundaries, and specifically
not independent and identically distributed (i.i.d.), we
observe a numerical agreement with the generalization
error’s scaling behavior predicted in Ref. [26], i.e.,

O
(√

T
n

)
, where T is the number of parameters and

n the number of training points. Since the QCNN is
composed of T = O[log (N)] parameters [20], we can
control the expected risk by training on n = O [log (N)]
points.

Training set. The training data set consists of the compo-
sition of points from two analytical models derived from
the simplification of the physical model used. Specifi-
cally, we consider the integrable Ising model in trans-
verse field in the case κ = 0 and the quasi classical model
when h = 0, where quantum fluctuations no longer exist.
We demonstrate that QCNNs extend their prediction to
the all phase diagram when only trained on the marginal
model given by SnX ⊆ {(κ, h) ∈ {0} × [0, 2]} ∪ {(κ, h) ∈
[0, 1] × {0}}. We consider three types of subsets X ∈
{GC,G2, U}, SnGC where n training points are sampled
normally around each critical point {(0,1), (0.5,0)}, SnG2
where n training points are sampled normally at the mid-
dle of each phase {(0,1.5), (0,0.5), (0.25,0), (0.75,0)} and
SnU where n data points are drawn uniformly on both
axes. The QCNN is trained using the cross entropy L
loss,

L = − 1

|SnX |
∑

(κ,h)∈Sn
X

K∑
j=1

yj(κ, h) log (pj(κ, h)) (2)

between the one-hot classical labels yj(κ, h) and the
predictions on the training region SnX of the phase space.

Results.
Once we have introduced the problem and defined the

techniques used, we can analyze the quality of the results
obtained under ideal conditions with a quantum simula-
tor.

We study our ability to reconstruct the phase diagram
of the ANNNI model, characterized by a non trivial dis-
ordered paramagnetic phase, the ordered ferromagnetic
phase, and antiphase one. To test the stability of the pro-
posed approach, we consider the model with an increas-
ing number of spins N = 6, 12 and sampling a different
number of points 0 < n ≤ 100 used for the training.
By virtue of the quality of the results, we evaluated the
influence of different sampling of the training points cor-
responding to the two physical models that could affect
the quality of the classification. A summary of the results
can be qualitatively seen in Figure 3, while more quan-
titative results for the QCNN are displayed in Appendix
B. In the first row, we have the phase diagram recon-
struction for the ANNNI model with six spins, where the
black lines represent the analytical transition explained
above in the model section. The second line in the figure
shows the same for a system with N = 12 spins.
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Figure 3: Quantum phases classification. (a) shows the classification accuracy of the QCNN as a function of the
number of training points n, for the Gaussian centered around the critical points (GC blue), Gaussian centered

around the middle of each phase (G2 black) and uniform sampling (red). (b) displays the phase diagram predicted
by the QCNN trained on S40G2 (red dots) where the color represents the probability mixture of being in one of the

three phases and the red lines the predicted boundaries, while (c) shows the anomaly score for a N = 6 spins
systems trained on the initial state |ψ〉 (red cross). (d)-(f) are similar but for N = 12 spins. The black lines are

hI(κ) for κ < 0.5 and hC(κ) for κ > 0.5

The first column shows the accuracy, computed on the
whole phase space, as a function of the number of train-
ing points n, for the Gaussian centered around the critical
points X = GC (blue), around the middle of each phase
X = G2 (black), and the uniform X = U (red) sampling
scheme, where the error bars correspond to one standard
deviation from ten independent runs. We observe that
the accuracy quickly increases with n, before saturating
for n ≥ 20, as argued in Ref. [26] and that the sampling
strategy does not play a major role. More importantly,
sampling away from the critical points is enough. The
second column displays the phase diagram obtained with
the QCNN trained on n = 40 points. Colour shades
represent the continuous probability distribution of the
QCNN for our multiclass classifier as a probability mix-
ture (blue, green and yellow times the relevant probabil-
ity), while the red lines represent the predicted bound-
aries. The individual probabilities of each phases pre-
dicted by the QCNN are shown in Appendix B. The last
column instead shows the comparison to the unsuper-
vised learning approach inspired from [25] where the au-
toencoder is trained to compress the single red cross |ψ〉,
and tested on the remaining points. In a nutshell, the

autoencoder is expected to perform poorly if the states
are far away in the Hilbert space, i.e., if they belong
to different phases, thus leading to a high compression
score. The color scale shows the compression loss of each
state. Additional details about the implementation of
the anomaly detection can be found in Appendix C. It is
worth noting that although only one training point is suf-
ficient to obtain a qualitatively good phase diagram, only
QCNNs allow a quantitative prediction for the phase.
Moreover, while the QCNNs are stable when changing
the training set, it is easy to find initial states where AD
performs poorly, for instance by starting in the paramag-
netic phase. The relatively good performance of AD can
be explained by the product state nature of the training
point. Hence, the product state can be easily compressed
with the autoencoder [58], while states corresponding to
a high magnetic field cannot.

Conclusions. This Letter addresses the computation
of the phase diagram of a non integrable model, by
training a QCNN on the limiting integrable regions of
the considered ANNNI model. We provide numerical
evidence that the QCNNs are able to generalize from
non-i.i.d. training data, which is a challenging task in
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general. The numerical simulations suggest that QCNNs
can carry this task with more than 97% accuracy, using
only n = 20 quantum data points distributed on the two
integrable axes of the phase space. Moreover, the data
points do not need to be close to the critical points.
The accuracy of the QCNN quickly increases to reach
its maximum as a function of the number of training
points, suggesting that QCNNs can generalize from a
few data points. Being a supervised method, the QCNN
is not able to detect phases that are not present in
the training set SnX , i.e., the boundaries, such as the
BKT phase transition and the PE line. Nevertheless,
AD is also not able to reveal them and is limited to
qualitative predictions, while a supervised approach
gives quantitative results whose quality can be easily
evaluated on the validation set. Moreover, by approach-
ing out-of-distribution generalization, we propose a
solution to the bottleneck of needing training labels,
that are generally challenging to obtain. Consequently,
we make a step into extending the reach of QML to
useful applications in physics. Future work should be
performed to detect phases not present in the training
set, such as the floating phase or the PE line, by either

affording O(1) training points inside these unrepresented
phases or mixing the QCNN with the unsupervised
approach.
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cisco C. Sá Barreto, and João Florencio, “Quantum
phase transitions in the one-dimensional transverse ising
model with second-neighbor interactions,” Phys. Rev. B
66, 064413 (2002).

[32] Anjan Kumar Chandra and Subinay Dasgupta, “Float-
ing phase in the one-dimensional transverse axial next-
nearest-neighbor ising model,” Phys. Rev. E 75, 021105
(2007).

[33] Matteo Beccaria, Massimo Campostrini, and Alessandra
Feo, “Density-matrix renormalization-group study of the
disorder line in the quantum axial next-nearest-neighbor
ising model,” Phys. Rev. B 73, 052402 (2006).

[34] Matteo Beccaria, Massimo Campostrini, and Alessan-
dra Feo, “Evidence for a floating phase of the trans-
verse annni model at high frustration,” Phys. Rev. B 76,
094410 (2007).

[35] Askery Canabarro, Felipe Fernandes Fanchini,
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Appendix A: Quantum data set

The variational quantum eigensolver (VQE) is used to
construct a quantum data set in the form of quantum cir-
cuits representing the ground states of the ANNNI model.
In a nutshell, a parameterized wavefunction is prepared
on a quantum computer, and its parameters are itera-
tively updated to minimize the expected value of the en-
ergy. Hence, using the variational principle, this param-
eterized wavefunction shall be a good approximation of
the ground state, assuming that the ansatz is expressive
enough and that the optimization is successful. We recall
that the ansatz is constructed with D = 6(9) repetitions
of a layer consisting of free rotations around the y-axis
Ry(θ) = e−iθσy/2 and CNOT gates with linear connectiv-
ity CXi,i+1 for 0 ≤ i < N , for N = 6(12) spins. The opti-
mization is performed with the ADAM algorithm, which
uses first-order gradient descent with momentum, where
the gradients are obtained with the automatic differen-
tiation framework provided by Pennylane [60]. We note
that the gradients can be obtained on quantum hard-
ware using the parameter-shift rule [61]. To improve the
convergence and accuracy of the quantum data set, we
perform five optimization rounds composed of 1000 up-
date steps by reducing the initial learning rate from 0.3
to 0.1 between each round. Moreover, we use a param-
eters recycling scheme [50], where the initial parameters
at the point (h, κ) are chosen to be the converged pa-
rameters from the previously computed neighboring site.
This strategy improves the speed and accuracy of the
optimization while keeping a high fidelity between neigh-
boring states, as expected from a physical point of view.
Figure 4 shows the accuracy of the VQE ground states
energy with respect to the exact one for the N = 12 spins
cases. We observe that the relative error ratio
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∣∣∣∣EVQE − Eexact

Eexact
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is always below 1%. Moreover, we notice that the accu-
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Figure 4: Normalised difference between the energy
obtained with exact diagonalization and those obtained
with the VQE on a log scale. Red lines correspond to
the numerical reference boundaries obtained through

Monte Carlo, while the dashed blue line represents the
second-order PE line.

Figure 5: Fidelity between the VQE and exact ground
states for N = 12 spins. Red lines correspond to the

numerical reference boundaries obtained through Monte
Carlo, while the dashed blue line represents the

second-order PE line.

line, indicating that the accuracy of the VQE algorithm
could be used to detect interesting regions of the phase
diagram. For instance, it could be used in conjunction
with the DMRG algorithm to expose such disorder lines.
We also report the fidelity between the VQE and exact
ground states in Figure 5. We observe that the param-
agnetic states are almost exactly reproduced, while the
fidelity for low magnetic field values is about 50%, and
lower around the critical points.

Appendix B: Details on the predicted phase diagram

As explained in the result section, the QCNN out-
puts the probability pj(κ, h) of obtaining the four two-
qubit state |01〉 , |10〉 , |11〉 and |00〉. We associate the
first three to the physical ferro-, para-magnetic, and an-
tiphase, while the last one is treated as a garbage class.
In the main text, we plot the probability mixture of the
three physical phases with a blue-green-yellow color chan-

(a)

(b)

(c)

(d)

Figure 6: Individual probability pi(κ, h) , 0 ≤ i < 4
(a-d), as a function of the Hamiltonian parameters. Red
lines correspond to the numerical reference boundaries
obtained through Monte Carlo, while the dashed blue

line represents the second-order PE line.
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Figure 7: Compression circuit (yellow) and anomaly
score measurement (C) of the ground states of H(κ, h)

obtained through a VQE (blue). The · represents
independent parameters.

nel. For clarity and completeness, the individual prob-
ability pi(κ, h) with N = 12 spins are shown in Figure
6, where the color indicates the magnitude of the corre-
sponding probability.

We observe that the probability of being in the garbage
class is almost zero, except near the triple point. More-
over, all predicted phase boundaries are sharp, indicating
the classifier’s confidence.

Appendix C: Anomaly Detection

For the reader’s convenience, we will recall the unsu-
pervised anomaly detection (AD) scheme, initially pro-
posed by Kottmann et al. [25], to draw the phase diagram
of the Bose-Hubbard model. Since it is an unsupervised
learning technique, it bypasses the bottleneck of needing
classical training labels and is, therefore, an alternative
to the approach taken in this letter.

As a first step, an initial state |ψ〉 is chosen in the
data set composed of the ground states of H. Although
there is no formal restriction, it should lie far from any
critical points. A quantum encoder [58] is then trained
to learn to compress |ψ〉 on a k-qubit state |φ〉, with

quantum register qC and k < N , i.e., to write |ψ〉 =
|φ〉 ⊗ |T 〉, where the latter is a (N − k)-qubit trash state
with register qT . The registers here refer to the indices of
the qubits composing the states. In practice, an anomaly
score based on the Hamming distance between the trash

state |T 〉 to |0〉⊗(N−k), written as

C =
1

2

∑
j∈qT

(1− 〈Zj〉), (C1)

and we make the choice k = bN/2c. Intuitively, the en-
coder compresses similar states, i.e., states in the same
phase, with success but will fail to compress states in a
different phase, leading to a high anomaly score. The
encoder, as proposed in [25], is composed of D layers
of independent Ry(θ) rotations on all qubits and CZi,j
gates for i ∈ qC , j ∈ qT and i, j ∈ qT . We use a slightly
modified version, with a first layer of Ry(·) individual
rotations, followed by D = 3 layers composed of CXi,j

gates for i ∈ qC and j ∈ qT , CZi,j gates with i, j ∈ qT
and independent Rz(·) rotations as displayed in Figure 7
for N = 6.

We highlight a few differences with the supervised ap-
proach. First, the anomaly score measurement is highly
dependent on the choice of the initial state |ψ〉, and can
often lead to phase diagrams without any clear phase sep-
aration. Moreover, there is no quantitative way to assess
the validity of the predicted phase diagram, while with
the QCNN, we may evaluate the accuracy on the val-
idation set. Finally, the anomaly score only provided
qualitative results. Hence, only a continuous number
(the anomaly syndrome) is associated with each point,
and there is no canonical way to assign it to a partic-
ular phase. On the other hand, the QCNN outputs the
probability of being in each phase and therefore, a unique
predicted phase can be assigned to each quantum state.
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