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The standard model (SM) of particle physics represents a theoretical paradigm for the description
of the fundamental forces of nature. Despite its broad applicability, the SM does not enable the
description of all physically possible events. The detection of events that cannot be described by
the SM, which are typically referred to as anomalous, and the related potential discovery of exotic
physical phenomena is a non-trivial task. The challenge becomes even greater with next-generation
colliders that will produce even more events with additional levels of complexity. The additional data
complexity motivates the search for unsupervised anomaly detection methods that do not require
prior knowledge about the underlying models. In this work, we develop such a technique. More
explicitly, we employ a quantum generative adversarial network to identify anomalous events. The
method learns the background distribution from SM data and, then, determines whether a given
event is characteristic for the learned background distribution. The proposed quantum-powered
anomaly detection strategy is tested on proof-of-principle examples using numerical simulations and
IBM Quantum processors. We find that the quantum generative techniques using ten times fewer
training data samples can yield comparable accuracy to the classical counterpart for the detection of
the Graviton and Higgs particles. Additionally, we empirically compute the capacity of the quantum
model and observe an improved expressivity compared to its classical counterpart.

I. INTRODUCTION

In data science, an anomaly corresponds to a data point
that does not fit into the considered data distribution [1, 2].
Anomaly detection corresponds to the identification of
these outliers. Being able to detect these data points is
crucial in domains such as network- and cyber-security [3,
4], fraud detection, cancer screening [5], and many more.

Another interesting application of anomaly detection
is in High Energy Physics (HEP). Currently, the Large
Hadron Collider (LHC) generates data sets of O(1) MB
per sample. Efficiently storing and analyzing the data will
become more challenging when the LHC will be updated
to the High Luminosity Large Hadron Collider (HL-LHC)
in 2029, since more collisions will be generated at a time [6].
There are many open computational challenges in particle
physics concerning data generation, data processing and
data analysis [7–11], e.g., the detection of events that
deviate from the Standard Model (SM) [12], the currently
most general description of the basic building blocks of
the universe. While the SM is a successful theory that is
able to account for many physical phenomena, it is not
compatible with, e.g., gravity. In order to fully understand
nature, events that cannot be described by the SM need
to be investigated in detail. In fact, currently one of the
main goals of data analysis in particle collider experiments
is the machine learning (ML)-based detection of rare
collisions corresponding to Beyond-the-Standard Model
(BSM) particles.

There are two main approaches for ML-based anomaly
detection, supervised and unsupervised. To train an
anomaly detection algorithm in a supervised manner,

we require labeled data sets representing the SM and
BSM events. In HEP, the reference data sets are usually
generated through numerical simulations of the SM or
an BSM theory, respectively. Even though this approach
has already been applied to detect several rare events
in experimental data [13–16], the main drawback is that
it does not allow for the search of particles which are
not described by an existing BSM theory. Therefore,
recent efforts have been focused on the development of
unsupervised approaches [17–24]. In the unsupervised
settings, a model is trained on unlabeled data, learning
its underlying structure with the aim of identifying events
that do not conform with the reference data as outliers.
If all current knowledge about particle physics is included
in the numerical generation of the training data, any
outlier identified in a set of measured collisions could
then be a sign of new physics. One family of promising
unsupervised ML approaches for anomaly detection are
generative methods [22, 25], specifically the one based on
Generative Adversarial Networks (GAN)s [26–28]. Such
approaches employ an adversarial training of two classical
neural networks, a generator and a discriminator [29, 30].
Based on the two networks it is then possible to derive
an anomaly score that allows to identify a data point as
an anomaly or not.

In this work, we explore and investigate the feasi-
bility of an unsupervised quantum machine learning
(QML) approach based on a quantum implementation
of a GAN [31, 32], i.e., a Quantum Generative Adversar-
ial Networks (qGAN), that we shall refer to as Anomaly
qGAN (A-qGAN). We demonstrate how a qGAN may
be used to detect BSM particles. A qGAN is trained on
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an embedded SM data set and then used to evaluate an
anomaly score by calculating a distance measure between
embedded data samples and quantum states generated
by the trained qGAN. Furthermore, we investigate the
practical performance of anomaly detection for BSM data
with quantum simulation and quantum hardware experi-
ments. These experiments reveal that an A-qGAN can
achieve the same anomaly detection accuracy as its classi-
cal counterpart using ten times fewer training data points.
Additionally, we study the expressive power of qGANs in
the context of anomaly detection with respect to a capac-
ity measure – the so-called effective dimension [33–36] –
and find that the quantum models can have advantageous
capacity properties.

This paper is organized as follows: In Section II, we
present both the classical and quantum GAN models. We
then describe the classical and quantum algorithms to
perform anomaly detection in Section III. In Section IV,
we present the results of empirical anomaly detection
experiments with compressed features of an artificial HEP
data set using numerical simulation and actual quantum
hardware. Finally, we conclude with a general discussion
of anomaly detection with A-qGANs in Section V.

II. THEORY

A. Generative Modelling

The experimental setup considered here corresponds
to a black-box setting, where we only have access to the
input and output of an experiment. A powerful algorithm
for approximating the underlying process is given by
generative learning, which has already been investigated
in different scientific domains, including chemistry [37]
and biology [38]. In the following, we will focus our study
on GANs. The given task is to learn a representation of
the probability distribution underlying a data set Pdata
using a parameterized ansatz. After a generative model is
trained, it can be used to generate new synthetic data that
are aligned with the generation process of the training set
or to investigate the learned approximation to the model
distribution Pdata.

1. Classical GAN

GANs [26, 39] consist of two competing components,
the generator GθG and the discriminator DθD , each repre-
sented by a differentiable, deterministic neural network
(see Fig. 1). The generator GθG aims at generating sam-
ples that could be mistaken for being drawn from the
data distribution Pdata while the discriminator DθD tries
to distinguish between the data coming from the gener-
ator GθG and samples from the training data set. The
generator takes as input a random sample z drawn from
a fixed prior distribution Pz for enabling the generation
of multiple outputs.

Multiple loss functions can be used to train this machine
learning architecture. In this paper, we focus on a non-
saturating loss function [27]. The generator minimizes
the following loss function

CG(θG, θD) = −1
2Ez∼Pz

logDθD (GθG(z)) , (1)

while the discriminator tries to maximize the following
loss function

CD(θG, θD) =− 1
2Ez∼Pz

log(1−DθD (GθG(z)))

− 1
2Ex∼Pdata logDθD (x) .

(2)

z GθG GθG(z)

x
DθDNoise

Generator Discriminator

Real 
or 

Fake?
Fake data

Real data

Update      ,θG θD

FIG. 1. Working principle of the GAN: a generator GθG

samples k data points, and the discriminator DθD receives k
data samples at a time from either the real data set and from
the generated samples and independently classifies them.

For the optimization of the parameters θG and θD,
standard optimizers can be employed, such as stochastic
gradient descent [40], ADAM [41] or AMSGRAD [42],
with alternating updates for generator and discriminator
parameters.

2. Quantum GAN

Several approaches are possible to translate the GAN
framework into a quantum machine learning context [7,
31, 32, 43]. In this work, we realize the generator and
the discriminator with a parameterized quantum circuit,
as is illustrated in Fig. 2. Both, the generator G and the
discriminator D, are defined on n-qubit registers with
parameterized unitaries G(θG) and D(θD). The generator
aims at generating a quantum state that represents the
distribution underlying the training data set. The discrim-
inator classifies data points as real/generated depending
on a single-qubit measurement on the discriminator’s
qubit register.

To enable a compatibility of this quantum model with
classical training data, we need to map each classical
training data point {x1, . . . ,xM} to a quantum state
{|x1〉 , . . . , |xM 〉}. It should be noted that the chosen
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mapping needs to be efficient. The generator circuit out-
puts a state |G〉 = G(θG) |0〉⊗n. Generating sampled from
our model requires to take measurements from |G〉 which
are then mapped to the feature space {x1, . . . ,xM}. The
discriminator takes as input an n-qubit quantum state and
labels it as real or generated based on the measurement of
the Pauli Z observable on the last qubit. If the resulting
measurement corresponds to the −1 eigenvalue, the input
data is classified as real and otherwise as generated.

Generator Discriminator|Gi

|0i

G(✓G) D(✓D)...

|0i

|xii

|0i

Ri D(✓D)...

|0i

1

|Gi

|0i

G(✓G) D(✓D)...

|0i

|xii

|0i

Ri D(✓D)...

|0i

1

|Gi

|0i

G(✓G) D(✓D)...

|0i

|xii

|0i

Ri D(✓D)...

|0i

1

|G〉
Fake data

Real data

Real or 
Fake?

Update      ,θG θD

FIG. 2. Illustration of a qGAN model for learning the dis-
tribution underlying a training data set {|x1〉 , . . . , |xM 〉}. At
each training step, the generator generates a state |G〉 and the
discriminator labels the generated state and a batch of the
embedded data points |xi〉 = Ri |0〉 as real or fake depending
on the Z-measurement of the last qubit.

To simplify the notation, we introduce the following
helper functions:

Cgenerated(θG, θD) = 1
2 −

1
2 〈G|D

†(θD) ÔD(θD)|G〉 , (3)

Cdata(θD) = 1
2 −

1
2M

M∑
i=1
〈xi|D†(θD) ÔD(θD)|xi〉 , (4)

where Ô = (1⊗ 1⊗ . . .⊗ Z) and M denotes the number
of data samples. Both functions determine the probability
of the discriminator labelling a state as real.

The loss function for the generator is then given by

CG(θG, θD) = −Cgenerated(θG, θD). (5)

The probability for the generated state |G〉 to be labeled
as real by the discriminator is maximized by minimizing
CG(θG, θD) with respect to θG. The discriminator D(θD),
on the other hand, tries to discriminate between the
generator output and training data by maximizing the
following cost function with respect to θD:

CD(θG, θD) = Cgenerated(θG, θD)− Cdata(θD). (6)

During the training the discriminator receives the quan-
tum generator output, i.e. a single quantum state repre-
senting the full spectrum of samples, and a batch of M
individual samples {|xi〉} from the training data. This

may induce a bias in the training that should be moni-
tored carefully and potentially counteracted with multiple
optimization steps for the discriminator before performing
a single optimization step for the generator.

The loss functions in Eqs. (5) and (6) are optimized in
an alternating fashion with, e.g., the ADAM optimizer,
by computing analytic quantum gradients [44] using a
parameter shift rule [45, 46]. To ensure trainability, i.e.
avoid exponentially vanishing gradients, the ansatz should
be chosen sufficiently shallow and with a suitable entan-
glement structure [47, 48]. Furthermore, the method can
be expected to be stable against cost-function dependent
barren plateaus [49] since only a single qubit measurement
is applied in the discriminator.

B. Anomaly Detection

1. Classical benchmark

The GAN framework introduced in Ref. [25] uses the
adversarial nature of the two networks to flag anomalous
data points. In the training, the generator learns the
structure of the non-anomalous data samples. Then, an
anomaly score is calculated on the testing data set and/or
on new data points to determine whether a new sample
aligns with the data distribution. This anomaly score is
obtained by optimizing an anomaly loss function based on
a combination of the discriminator and generator output.
This realizes a combination of all possible information
available to the system and can help to compensate for
potential instabilities in the generator/discriminator train-
ing.

Given a data point x, the minimization of the anomaly
loss function aims to find an input noise zopt correspond-
ing to a generated event G(zopt) as similar as possible to
x and located on the learned manifold of the GAN. The
corresponding anomaly loss function reads

SC(x;α) = min
z
LC(z)

= min
z

(1− α)‖x− G(z)‖+ α‖D(x)−D(G(z))‖.
(7)

The first term computes the similarity between the gen-
erated event G(z) and the data point x and the second
term measures the similarity of the discriminator outputs
D(G(z)) and D(x). Furthermore, the parameter α is used
to weigh the importance of both terms.

Given α and a well-chosen threshold δ > 0, a data point
x is identified as an anomaly if

SC(x;α) > δ. (8)

In practice, the threshold δ is chosen such that it realizes
a representative differentiation between non-anomalous
and anomalous data. In our case, we may employ training
data corresponding to SM and BSM to find a reasonable
baseline for this parameter.



4

2. Quantum approach

Next, we introduce our A-qGAN algorithm for the
detection of anomalies. We consider a qGAN architecture
with a quantum generator and a quantum discriminator
as described in Section II A 2. First, each classical data
point xj is mapped to a quantum state |xj〉. During
the training, the qGAN learns a representation for the
distribution underlying the generation process of the
classical {xj}Mj=1. The anomaly score is then evaluated
for data points |x〉 of the test data set. The loss for the
anomaly score is defined as:

SQ(x;α) = (1− α)|〈x|G〉|2 + α
1 + 〈Z〉D|x〉 〈Z〉D|G〉

2 , (9)

with 〈Z〉|u〉 = 〈u|1⊗ 1⊗ . . .⊗ Z|u〉. The first term is
a residual score. It measures the fidelity between the
embedded input point |xj〉 and the trained generator state
|G〉. It should be noted that the fidelity measure can suffer
from exponential concentration effects [50, 51]. Finding
scalable distance measures remain an open question for
future research. The second term is a discriminator score
based on the classification of the embedded input point
|xj〉 and the trained generator state |G〉. Finally, the
parameter α weighs the importance of both circuits for
the anomaly score. Equivalently to the classical case, an
event is labelled as anomalous if

SQ(x;α) > δ, (10)

for reasonably chosen δ and α. The quantum anomaly
score differs from the classical score in the sense that it
does not require an additional optimization over the ran-
dom prior z due to the intrinsic stochasticity of quantum
measurements.

III. METHODS

A. High Energy Physics Data Set

In this work, we are focusing on an artificial data set
generated according to HEP experiments. The training
data set consists of a weighted mixture of different SM
processes typically observed at 13 TeV with weights given
by the production cross section of the corresponding pro-
cesses [52]. This accounts for the most representative
processes in the SM. The anomalous data sets were ob-
tained through the simulation of BSM processes obtained
with the PYTHIA8 Monte Carlo simulator [53–55]. In
this work, we consider the Higgs boson and the Gravi-
ton as anomalies. The SM training data set contains
3’450’279 different events and the testing data set con-
tains 3’450’277 events. Additionally to the SM data set,
we also work with a Higgs boson data set [56] containing
139’991 events and a Graviton data set [57] containing
6’910 events. In all data sets, an event is characterized

by a list of 23 high-level features [58]. For the quantum
approach, we randomly select 100 SM events to build a
training set and 100 events for each the testing SM data
set, the Graviton data set and the Higgs data set. For the
classical benchmark, we randomly select 10 times more,
i.e., 1’000 events from each data set including the 100
events used for the quantum approach.

We apply classical pre-processing steps: we efficiently
extract a compressed representation of the data sets with
the Principal Component Analysis (PCA) method [59]
and normalize the training data set to be in [−π2 ,

π
2 ]. This

is necessary due to the periodicity of Pauli rotations that
builds the foundation of the data encoding in our ansatz.

The training quantum data set is obtained by mapping
each data point x ∈ [−π2 ,

π
2 ]n to an n-qubit quantum

state |x〉 obtained with the angle encoding [60–62]:

|x〉 =
n⊗
i=1

Ry(xi) |0〉i , (11)

where xi corresponds to the feature i of the data point x
and |0〉i to the ground state of qubit i.

B. Quantum implementation

We implement the quantum anomaly detection algo-
rithm in Qiskit [63]. The quantum generator circuit G(θG)
consists of an initialization layer and kG alternating lay-
ers of parameterized Pauli-Y single-qubit rotations and
blocks of controlled-Z gates (see Fig. 3a) [64, 65]. The ini-
tialization layer consists of Hadamard gates H [66] on all
qubits. In total, the circuit has (kG + 1)n parameterized
Pauli-Y rotations and kGn controlled-Z gates.

The quantum discriminator is also a parameterized
quantum circuit. We use an ansatz containing approxi-
mately as many parameters as the generator. The varia-
tional form of the discriminator consists of several parts:
first, we apply a layer of Hadamard gates on all qubits
followed by kD alternating layers of parameterized single-
qubit rotations, Pauli-Y (RY ) and Pauli-Z(RZ) rotations
on all qubits followed by controlled-Z gates (CZ). Then,
a series of controlled-X (CNOT ) [66] is applied with the
target on the last qubit. Finally, RX , RY and RZ single-
qubit rotations are applied on the last qubit. In total, the
circuit has 3(kDn + 1) parameterized single-qubit rota-
tions. The quantum circuit of the discriminator is shown
in Fig. 3b.

In practice, at each optimization step, the training data
is shuffled and split into batches of size 10. The discrimi-
nator is trained with samples from the batch while the
generator is trained to output a single quantum state. We
improve the stability of the algorithm with more optimiza-
tion iterations for the discriminator than for the generator.
The optimizers and respective hyperparameters which are
used in the experiments are given in Section IV.
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repeat kG times

|0〉 H RY (θ0,j
G ) • •

...
...

|0〉 H RY (θi,jG ) • •

...
...

|0〉 H RY (θn−1,j
G ) • •

(a) Ansatz for the generator

repeat kD times

|0〉 H RZ(θ0,j
D ) RY (θ0,j+1

D ) RZ(θ0,j+2
D ) • •

...
...

|0〉 H RZ(θi,jD ) RY (θi,j+1
D ) RZ(θi,j+2

D ) • • •

...
...

|0〉 H RZ(θn−1,j
D ) RY (θn−1,j+1

D ) RZ(θn−1,j+2
D ) • RX(θn,4D ) RY (θn,5D ) RZ(θn,6D )

(b) Ansatz for the discriminator

FIG. 3. Ansatz for the quantum architecture. The quantum generator (a) consists of Ry rotation gates and CZ gates with
variational parameters θi,jG which corresponds to the parameter of the RY rotation acting on the i qubit on the j layer. The
quantum discriminator (b) consists of RX , RY and RZ rotation gates, CZ and CNOT gates with variational parameters θi,jD .

C. Classification scores

We measure the performance of this anomaly detection
problem with different metrics, the Receiver Operator
Characteristics (ROC) [67, 68], accuracy, F1 score, and
precision, which are defined as:

Accuracy = True Anomalies
Total number of events , (12)

Precision = True Anomalies
True Anomalies + False Anomalies ,

(13)
and

F1 = 2
Recall−1 + Precision−1 (14)

with Recall = True Anomalies
True Anomalies + False Non-Anomalies .

An ROC curve corresponds to the plot of the true positive
rate versus the false positive rate. It essentially measures
the performance of a binary classifier as its cutoff thresh-
old is varied. In practice, the area under the ROC curve,
the Area Under Curve (AUC), represents the degree of
separability of a classifier. The higher the AUC the better
the model is at predicting the correct class of its input.

D. Anomaly detection algorithm

The anomaly score is computed for each sample in
the SM, Graviton and Higgs data sets. The mean of the
anomaly scores for the data sets define thresholds which in
turn help to identify whether a test sample is an anomaly
or not. We apply a grid search over the α parameter, to
find the one which results in the best AUC on the test
data set. The anomaly detection procedure is explained
in Algorithm 1.

Algorithm 1: Anomaly detection algorithm
Data: Training data set D = {x1, . . . ,xM} (or

{|x1〉 , . . . , |xM 〉}), testing data set T , generator
optimizer OptG, discriminator optimizer OptD.

for number of training steps do
Train generative model (G,D) based on

Section. II A 1 or II A 2 with OptG and OptD.
end
for α ∈ [0, 1] do

for x ∈ D ∪ T do
if classical then

SC(x)← minz[(1− α)‖x− G(z)‖+ α‖D(x)−D(G(z))‖;
end
if quantum then

SQ(x)← (1− α)|〈x|G〉|2 + α
1 + 〈Z〉D|x〉 〈Z〉D|G〉

2 ;
end

end
Compute ROC Curve and AUC(α) score;
Compute F1(α), Accuracy(α), and Precision(α)
scores;

end
Compute AUC(αmax) = maxα AUC(α);
return F1(αmax), Accuracy(αmax), and Precision(αmax)

E. Effective dimension study

In the last part of this work, we will discuss the rep-
resentation power of qGANs and classical equivalents
for anomaly detection in HEP. We consider the effective
dimension, initially introduced in Ref. [33], which cor-
responds to a measure of the expressibility of a neural
network. The effective dimension is an expressibility mea-
sure that can be applied to quantum as well as classical
models. More specifically, this measure quantifies what
fraction of the model space can actually be covered with
the available system parameters. In the case of (q)GANs,
the effective dimension measures how the (quantum) gen-
erator explores the model space for a given amount of
parameters. A higher effective dimension then indicates
a higher capacity of the model.
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IV. RESULTS AND DISCUSSION

In the following, we apply the proposed quantum
anomaly detection technique to the HEP data sets in-
troduced in Section III A. First, we present the results
for the training of the (q)GANs on up to 8 features, and
then also demonstrate its feasibility on actual quantum
hardware using 3 features. It should be noted that ex-
periments at larger scale are currently infeasible due to
the noise present in today’s quantum devices. Finally, we
study the effective dimension of the applied generators,
in order to asses their learning capacity.

A. Numerical results

In the quantum simulations, we first optimize the
qGANs on a noiseless simulator for 500 epochs with the
AMSGRAD optimizer [42], applying a learning rate of
10−3, and (β1, β2) = (0.7, 0.99). Once trained, we com-
pute the anomaly score for the SM testing, the Higgs, and
the Graviton data sets. Based on the anomaly score, we
then perform the classification between the SM and the
anomalies using a varying threshold. Next, we repeat the
A-qGAN procedure on a noisy simulator that mimics the
behavior of the superconducting IBM Quantum processor
ibmq belem. This optimization is performed with the same
optimizer but using a learning rate of 10−2 to handle the
noise of the hardware and ten times fewer training epochs.
Once trained, we also compute the anomaly score for all
data sets and classify the different events.

We benchmark the quantum models against classical
neural networks consisting of fully-connected layers with
different non-linear activation functions (sigmoid σ, ReLU,
LeakyReLU with parameters α = 0.2) or dropout layers of
probability 0.25. The architectures of the classical neural
networks are chosen, such that they have a number of
trainable parameters comparable to the quantum case.

In the following, we use 10 randomly selected instances
of the training and testing data sets introduced in Sec-
tion III A. We perform anomaly detection using between
3 and 8 features, each obtained with PCA-compression.
The classification metrics resulting from the anomaly de-
tection using 3 or 7 features are compared in Table I. The
data shows that classical and quantum anomaly detection
methods achieve comparable classification metrics in both
cases. For the 3-feature (7-feature) simulation, we use
3 (9) repetitions of the generator ansatz in Fig. 3a, and
2 (3) repetitions of the discriminator ansatz in Fig. 3b,
yielding 6 (70) trainable parameters for the generator
and 21 (66) trainable parameters for the discriminator,
respectively. Furthermore, in each training epoch, we
apply more optimization updates for the discriminator
than for the generator, 5 times more for the training on 3
features, and 10 times more for 7 features, respectively.

We plot the evolution of the AUC score for an increas-
ing number of features in Fig. 4. As we increase the
number of features, the classical model gets better at

detecting the Graviton (see Fig. 4a). The A-qGAN per-
formance with less training data also improves, reaching
the performance of the classical algorithm for six PCA-
compressed features. After 6 features, we reach a plateau
where the performance of the classical and quantum mod-
els is comparable. Similarly, the classical Higgs detection
performance slightly improves as we add more features
before reaching a plateau for 6 or more features, where the
average AUC scores are worse than those obtained with
less features (see Fig. 4b). The classical algorithm slightly
outperforms the quantum one for less than seven features.
For seven and eight features, the quantum simulations
with less training data are similar in performance to the
classical case. Comparing the two figures, we can observe
that detecting the Higgs particle is more challenging than
detecting the Graviton for both, quantum and classical
models, as also noted in Ref. [69]. We can also notice
that for both, the Graviton and the Higgs detection, we
get similar performance between the noiseless and noisy
quantum simulations, which indicates some level of noise
robustness of the A-qGAN.

It is worth stressing that the quantum models were
trained with 10 times fewer data samples than the classi-
cal models, but still achieve comparable accuracy, AUC,
precision and F1 scores.

The large standard deviations shown in Fig. 4 can be
explained by the intrinsic volatility in the GAN training
and by the data set reshufflings.

B. Hardware experiments

Next, we perform anomaly detection on the supercon-
ducting IBM Quantum processor ibmq belem. Fig. 5 shows
the topology of the hardware with the CNOT errors and
the T1 time for each qubit. For the training of the qGAN,
we use the same protocol as before (with the same genera-
tor and discriminator optimization hyperparameters as in
the noisy simulation). We use 104 shots for each expecta-
tion value estimation during the training and the anomaly
score computation. Additionally, to ease the hardware
training, we reduce the number of training epochs to 5.

In this part, we only consider the anomaly detection of
the Graviton particle using 3 features. To ease the com-
putation on the quantum hardware, we train on subsets
of 50 events taken from the 10 training data sets used in
Section IV A and then compute the anomaly scores for
the SM and Graviton events. Fig. 6 presents the average
ROC curve of the A-qGAN trained on the noisy quantum
hardware (green), compared to the classical method (blue)
and the noiseless A-qGAN (orange).

Compared to the classical and noiseless methods, the
AUC curve of the A-qGAN evaluated on the quantum
hardware is lower. These differences can be explained
by the reduced number of epochs, and smaller data sets
compared to the noiseless algorithm.
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FIG. 4. AUC score for increasing number of features used for the detection of the Graviton (a) and the Higgs (b) particles. For
the detection of the Graviton, the AUC score increases with the number of features. For the detection of the Higgs particle, the
AUC is constant between 3 and 5 features and slowly decreases after 6 features for the classical model. This is in contrast to the
quantum models, which reach their best performance only for 7 features.

Anomaly Features Method Best α value F1 score Accuracy Precision ROC-AUC

Graviton
3 GAN 0.25 0.83± 0.127 0.80± 0.162 0.91± 0.183 0.82± 0.205

qGAN 0 0.77± 0.084 0.71± 0.126 0.90± 0.163 0.70± 0.169

7 GAN 0.75 0.96± 0.059 0.95± 0.072 1.0± 0.001 0.96± 0.086
qGAN 0.75 0.92± 0.035 0.92± 0.042 1.0± 0.002 0.96± 0.038

Higgs
3 GAN 0.5 0.83± 0.088 0.83± 0.093 0.98± 0.036 0.89± 0.087

qGAN 0.25 0.75± 0.081 0.70± 0.125 0.87± 0.162 0.71± 0.164

7 GAN 1 0.82± 0.089 0.81± 0.098 1.0± 0.003 0.87± 0.091
qGAN 0.5 0.89± 0.063 0.88± 0.080 1.0± 0.001 0.92± 0.084

TABLE I. Classification scores for the detection of BSM anomalies using three and seven principal components, given for the
best α value in the anomaly score. The bold characters correspond to the best results between the classical and quantum
methods. In all cases, the quantum calculations are done with 100 data samples while the classical one contains 1000 data
samples containing these 100 data samples. For 3 features, the classical model yields better classification scores than for the
quantum one for both the Graviton and Higgs detections. For 7 features, the quantum and classical models yield similar
classification scores for detection of both the Graviton and Higgs events.
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Min 7.880e-3 Max 1.477e-2

Median 1.011e-2

FIG. 5. Topology of the IBM Quantum processor ibmq belem.
Qubits are represented as circles and the supported two-qubit
gate operations are displayed as edges connecting the qubits.
The coloring of the qubits indicates their respective T1 times
and the coloring of the edges indicates the errors induced by
CNOT gates. The T1 times and CNOT errors were obtained
on February 7, 2023. The highlighted qubits are the ones used
for the experiments.

C. Effective dimension study

We now compare the effective dimensions of the quan-
tum and classical generators for different system sizes. It
should be noted that we use a similar amount of trainable
parameters for the quantum and classical neural networks
employed for both the generator and discriminator of the
GAN. Hence, their effective dimensions can be directly
compared. Fig. 7 shows the effective dimension for increas-
ing number of features. The green (red) dots represent
the effective dimension of the trained quantum (classical)
model. The effective dimension of the quantum model is
always larger than for the classical model which indicates
a higher expressibility. It should also be noted that as we
increase the dimension of the system, the effective dimen-
sion decreases for the chosen generator ansatzes with O(n)
parameters. Furthermore, the effective dimension of the
classical model appears to converge towards 0, hinting at
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FIG. 6. ROC-AUC curve of the classification between SM and
Graviton events for the classical GAN (blue), the noiseless
simulation of a qGAN (orange), and the qGAN executed on the
IBM Quantum processor ibmq belem. All models are trained
on 3 features of the SM data set, and evaluated on SM and
Graviton events.
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FIG. 7. Effective dimension of the classical (red pentagons)
and quantum (green circles) generator for increasing number
of features. For each number of features, the classical and
quantum generator have the same number of trainable parame-
ters. Therefore, the higher effective dimension of the quantum
generator indicates a potential advantage of the quantum
approach over the classical one.

a lack of capacity when the classical model is restricted to
the same amount of trainable parameters as the quantum
model. This may be indicative for a potential advantage
of our quantum methodology in larger dimensions as the
effective dimension and, hence, expressive capacity of
the classical model for O(n) parameters could become
insufficient.

V. DISCUSSIONS AND CONCLUSIONS

In this work, we proposed and successfully tested an
unsupervised learning strategy based on quantum genera-
tive modeling techniques for anomaly detection in HEP.
In the introduced A-qGAN algorithm, we apply a qGAN
to learn the underlying probability distribution from a
data set of SM events encoded in quantum states, and
then use it to identify HEP processes that do not conform
with the SM. The classification is based on an anomaly
score, which serves as a distance measure between SM
events and other events of interest, not contemplated in
the SM. Specifically, we verify the proposed anomaly de-
tection scheme by identifying Higgs and Graviton events.
Our quantum anomaly detection scheme is designed to
be robust to training instabilities by using an anomaly
score that relies on the quantum generator and the quan-
tum discriminator output. Additionally, the proposed
generative method can detect new-physics events without
modelling a specific BSM scenario.

The presented experiments show that in both cases the
anomaly detection performance improves as we increase
the number of compressed features with quantum and
classical method yielding comparable accuracy. Overall,
our results indicate that the proposed quantum approach
can detect Graviton and Higgs events using ten times
fewer data points compared to a classical benchmark based
on classical GANs with the same number of trainable
parameters. It should, however, be mentioned that a lack
of data is typically not a problem in this type of HEP task.
In fact, the amount of training data will even increase in
the next years. Nevertheless, the indication that anomaly
detection could be performed with a reduced training data
set, could set the ground for other applications suffering
from data scarcity in other HEP tasks or other fields such
as medicine. Moreover, we showed that the quantum
model exhibits a larger expressive power, measured by a
higher effective dimension, than the classical counterpart.
This suggests that our qGAN-based anomaly detection
scheme could be better suited to model and detect BSM
anomalies in more complex and/or scaled settings.

Future research directions aimed at confirming and
extending our preliminary results could address a more
extensive collection of data sets and scale up the relevant
model and feature dimensions, approaching the regime
where our A-qGAN can no longer be simulated classically.
As the field of unsupervised anomaly detection in HEP
is still relatively young, particularly for what concerns
the application of quantum methods, future studies could
also investigate alternative approaches, which could be
compared or could complement generative models. As
an example, it was recently shown that a supervised
kernel method based on the generation of a scrambled
anomalous data set [69] can achieve performances close to
the best known classical equivalents, and an unsupervised
technique [70] can potentially outperform its classical
counterpart. It is also worth mentioning that the use
of classically prepared and pre-processed features might
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hide some of the quantum correlations originally present
in the data [69, 70]. One could hence envisage the use of
the A-qGAN framework for detecting anomalies directly
on quantum data sets, obtained for instance through
quantum sensing or, e.g., by directly coupling quantum
processors to a new generation of quantum detectors.

Lastly, while in this work we mainly focused on de-
tecting anomalies, the proposed qGAN framework could
potentially be modified to facilitate the generation of
events beyond the SM. In particular, once trained on
the SM, one could possibly use the model to generate
events on a channel orthogonal to the learned data rep-
resentation. As a result, our framework could open up
novel research avenues at the interface between quantum
technologies and HEP.
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Demirköz, Daniel Dobos, Karolos Potamianos, Sofia Val-
lecorsa, Jean-Roch Vlimant, and Richard Forster. Hybrid
quantum classical graph neural networks for particle track
reconstruction. Quantum Machine Intelligence, 3:1–20,
2021.
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Lucchi, Alessio Figalli, and Stefan Woerner. The power of
quantum neural networks. Nature Computational Science,
1(6):403–409, 2021.

[34] Oksana Berezniuk, Alessio Figalli, Raffaele Ghigliazza,
and Kharen Musaelian. A scale-dependent notion of
effective dimension. arXiv preprint arXiv:2001.10872,
2020.

[35] Jorma J Rissanen. Fisher information and stochastic
complexity. IEEE transactions on information theory,
42(1):40–47, 1996.

[36] Thomas M Cover. Elements of information theory. John
Wiley & Sons, 1999.

[37] Artur Kadurin, Sergey Nikolenko, Kuzma Khrabrov, Alex
Aliper, and Alex Zhavoronkov. druGAN: an advanced
generative adversarial autoencoder model for de novo
generation of new molecules with desired molecular prop-
erties in silico. Molecular pharmaceutics, 14(9):3098–3104,
2017.

[38] Nathan Killoran, Leo J Lee, Andrew Delong, David Du-
venaud, and Brendan J Frey. Generating and design-
ing DNA with deep generative models. arXiv preprint
arXiv:1712.06148, 2017.
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