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Abstract

The Quantum Angle Generator (QAG) is a new full Quantum Machine
Learning model designed to generate accurate images on current Noise
Intermediate Scale (NISQ) Quantum devices. Variational quantum cir-
cuits form the core of the QAG model, and various circuit architectures
are evaluated. In combination with the so-called MERA-upsampling
architecture, the QAG model achieves excellent results, which are ana-
lyzed and evaluated in detail. To our knowledge, this is the first
time that a quantum model has achieved such accurate results. To
explore the robustness of the model to noise, an extensive quantum
noise study is performed. In this paper, it is demonstrated that the
model trained on a physical quantum device learns the noise char-
acteristics of the hardware and generates outstanding results. It is
verified that even a quantum hardware machine calibration change
during training of up to 8% can be well tolerated. For demonstra-
tion, the model is employed in indispensable simulations in high
energy physics required to measure particle energies and, ultimately,
to discover unknown particles at the Large Hadron Collider at CERN.

Keywords: Full Quantum Generative Model, Quantum Image Generation,
Detailed Quantum Inference Evaluation, Quantum Noise Study, Quantum
Circuit Entanglement Study, Quantum Hardware Training
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2 Precise Image Generation on Noisy Quantum Computing Devices

1 Introduction

Quantum computing has the potential for a new paradigm in future computing
to accelerate tasks or even handle classically unsolvable problems [1]. In the
current Noise Intermediate Scale Quantum (NISQ) era, quantum devices suffer
from non-negligible hardware errors, limited connectivity and a limited num-
ber of qubits [2]. While practical quantum advantage is currently extremely
difficult to accomplish, finding the best suited algorithms to effectively combat
the problems of NISQ-era devices remains a widely researched topic. Quan-
tum Machine Learning (QML) is a domain which achieves acceptable results
on NISQ devices due to the observed robustness against noise [3].

High Energy Physics (HEP) experiments, such as those at the Large
Hadron Collider (LHC) at CERN, require enormous amounts of simulated data
for deriving high precision physics results [4]. To handle this demand, gigantic
quantities of computing hardware resources are necessary, which has led to the
creation of the world’s largest computing grid operated by CERN [5]. To alle-
viate this strain on computational resources, Machine Learning (ML) models
have been developed that exhibit remarkable speed-ups over current Monte
Carlo-based simulations while maintaining the required level of accuracy. In
general, QML simulations represent a promising approach to address the only
further increasing simulation demands in the future [6, 7]. QML employs
quantum circuits which exploit the quantum properties of superposition and
entanglement, which possess the potential to outperform neural networks, their
classical analogue [8]. In addition, QML might have the advantage of learning
more complex distributions with fewer parameters than classical ML due to
their wider accessible phase space.

Encoding the classical data into qubit states on quantum computers is a
non-trivial task [9]. Currently, many encoding techniques exist, each exhibiting
specific advantages and disadvantages, and in practice, identifying “the best”
encoding technique remains application dependent [9]. To achieve a potential
quantum advantage over classical computing, theoretical studies suggest that
at least linear scaling from qubits to features is required [10]. On the other side,
models which employ better than linear scaling encoding techniques have draw-
backs, making them unsuitable for generating precise images on NISQ devices.
For example, amplitude encoding can only generate probability distributions
and not absolute pixel entries, i.e. energy values.

At present, there exist several quantum generative models, for example, the
Quantum Circuit Born Machine (QCBM) [11], Quantum Variational Autoen-
coders [12] or variations of quantum Generative Adversarial Networks [13–15].
They all face limitations. Some models either do not scale well in terms of
qubits required relative to the number of encoded features, or they do not
achieve a satisfying level of fidelity. The Quantum Angle Generator (QAG)
presented in this paper and first introduced in reference [16], aims to over-
come these problems. Employing angle encoding with linear scaling of qubits
to features, it achieves extremely accurate results for a real-world problem on
current physical noisy quantum devices.
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Fig. 1: An example 3D calorimeter shower image.

The paper content is structured as follows. First, the HEP use case is
motivated, and the training data is defined. Next, the QAG model and the
employed angle encoding technique are presented. Then, multiple circuit archi-
tectures are compared and the advantages of the best ones are highlighted. An
in-depth accuracy analysis of the model follows to highlight its excellent pre-
cision. The quantum hardware noise behavior is evaluated, including training
and inference executed on real quantum devices. Lastly, conclusions are drawn
and summarized.

2 High Energy Physics Simulations

Simulations remain a crucial component of HEP analysis to evaluate the results
obtained by the processed data of the experiments. Currently, simulations are
dominantly performed with Monte Carlo methods such as the Geant4 toolkit
[17]. However, Monte Carlo simulations are very hardware resource demand-
ing and occupy half of the worldwide LHC Computing Grid [18]. Future
LHC experiments will require more simulations due to more energetic parti-
cles, simultaneous collisions and detectors constructed with higher granularity.
However, the projected budget for hardware development and computing
resources cannot keep pace with these increasing demands [19, 20]. As a result,
ML alternatives to Monte Carlo methods are being actively researched. Ini-
tial prototypes predict significant reductions in simulation time and hardware
resources while retaining acceptable levels of accuracy [21–23]. This research
goes one step beyond classical ML. Since HEP data sets are generally created
by underlying quantum mechanical effects, performing the computations on
quantum devices which likewise make use of quantum effects has the poten-
tial to substantially enhance the simulations in accuracy and in terms of
sustainable computing.

Electromagnetic calorimeters are constructed as high granularity sensor
grids to measure the energy of photons, electrons, and positrons through
complex particle shower generation processes in space and time [24]. They
constitute a key component of HEP detectors to measure the energy of the
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Fig. 2: The structure of the Quantum Angle Generator.

particles produced in the interaction process and occupy most of the simula-
tion time [18]. Calorimeter outputs can be interpreted at lowest order as static
and spatial 3D images, which we call “shower images”: the value of each pixel
corresponds to the energy measured in a specific calorimeter cell. The initial
data from reference [25] consists of 25× 25× 25 pixel images. An example of
a 3D shower image is visualized in figure 1. To reduce the dimensionality, the
images are averaged along two spatial axes (x- and y-direction), resulting in a
one-dimensional representation that is further downsampled to eight pixels by
averaging three contiguous pixels along the z-direction. Although the initial
data set provides many different energies, for simplicity this study focuses on
images recorded by particles in the energy range of [225, 275]GeV. The data
set is split into a training and test set, each consisting of approximately 1 000
samples. The downsampled data is available in reference [26], and an example
image is illustrated later in this paper in figure 6a.

3 The Quantum Angle Generator

The QAG represents a QML model which employs the well established tech-
nique of angle encoding [27, 28] to generate extremely precise images. It scales
linearly with the number of encoded features. Thus, the generation of n fea-
tures requires n qubits. In this study, the number of features corresponds to
the number of pixels. A comprehensive description of the QAG model, its
objective training function, and an evaluation of several quantum circuits are
provided below.

3.1 Model Description

The QAG model consists of variational quantum circuits trained by an objec-
tive function. The model structure is visualized in figure 2. All qubits are
initialized in the basis state |0⟩. The state preparation function implements
a Hadamard (H) gate to constitute superposition, followed by a y-rotational
(Ry) gate to introduce randomness so that the model can draw new samples at
each execution. For this, the Ry gate angles Ω are randomly drawn from a [-1,
1] uniform distribution and pixel-wise multiplied by the pixel standard devia-
tions present in the training data to obtain correct pixel energy variations. To
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(a) (b)

Fig. 3: (a) Decoding of an example state Ψ into an angle θ. (b) Some repre-
sentative angles θ and its corresponding energy values.

account for all various primary particle energies, all angles Ω are multiplied
by a random value between [-0.25, 0.25].

The unitary transformation consists of quantum circuits and constitutes
the trainable part of the QAG model. Various circuit architectures were tested
as documented in section 3.3.

To convert the quantum states back into classical energy values via angle
encoding, the model must be executed multiple times and the quantum states
measured. The number of executions is commonly denoted as the number
of shots nbshots. It is counted how often state |0⟩ is measured. The scalar
intersection I of the vertical axis on the Bloch sphere (z-axis) is calculated
with:

I = 2 · counts(|0⟩)
nbshots

− 1 . (1)

Next, the intersection I is transformed into the rotational angle θ by the
trigonometric function θ = arcsin(I).

The angle θ operates in the x-z-plane of the Bloch sphere and is defined
as zero in the |+⟩ state. Rotating θ clockwise leads to positive angles. The
decoding process is visually illustrated in figure 3a with an example state |Ψ⟩,
its intersection I and the corresponding angle θ for a single qubit example. The
angle θ can then be transformed into a pixel energy E by the linear change of
ranges equation:

E =
(Emax − Emin)(θ − θmin)

θmax − θmin
. (2)

Emax, Emin, θmax and θmin are defined in figure 3b: the minimum energy
Emin = 0MeV is set to θ = −π/2 and the maximum energy Emax = 0.6MeV
is set to θ = +π/2. With Emin = 0 and θmax = −θmin equation 2 can be
simplified into:

E =

(
Emax

2 · θmax

)
· (θ + θmax) . (3)
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For multi-qubit quantum circuits: the final quantum states of all qubits are
measured, and the outcomes are decoded independently. Although the qubit
results are individually decoded, the state of each qubit is entangled with
others due to the gates applied within the variational quantum circuit, as lined
out later.

It is worth to be noted that the angle θ and, therefore, the corresponding
decoded energy E remain in discrete values. Since, θ depends in value and
accuracy on the number of shots nbshots: the larger nbshots, the better the
achievable energy precision and resolution. Fortunately, with present quantum
devices, the nbshots can be easily chosen to be large. Currently, on IBMQ
devices the maximum possible number of shots is nbshots = 100 000. For the
simplified calorimeter use case, this is more than sufficient. For comparison,
in a previous classical reduced precision ML research in reference [29], it is
demonstrated that already 256 discrete energy levels are sufficient for correctly
reproducing the full-size calorimeter shower image. In this reduced precision
research, the parameters of the neural network are quantized from a larger
format (floating point 32) down to a smaller number format (integer 8). This
study will show that 512 shots provide a sufficient resolution.

3.2 Training Objective Function

The QAG model is trained with two losses employed as objective functions.
The first one is the Mean Maximum Discrepancy (MMD) loss, already suc-
cessfully applied by other quantum models, e.g. the QCBM [11]. Training
exclusively with the MMD loss resulted in good average shower distributions.
However, when exploring the generated images in more detail, for example in
the pixel correlation, the model did not perform satisfactorily. Therefore, a
second correlation (Corr) loss is added to help learn the patterns present in
the training data (e.g., image pixel correlations). The Corr loss is calculated
by the pixel-wise mean squared error (MSE) between the pixel correlation val-
ues present in the training data and the ones inside the generated data. The
pixel-wise correlations are illustrated in figure 6b.

To train the QAG model, the Simultaneous Perturbation Stochastic
Approximation (SPSA) optimizer [30] is employed, which only requires two
optimization steps per epoch. The hyperparameters for training were found by
extensive hyperparameter searches employing the Optuna [31] library. All tests
in this study are executed in Qiskit version 0.26.2. The models are trained for
500 epochs, containing one batch. The dynamic MMD loss weight starts at a
value of one and decays linearly with −0.001·epoch, starting from epoch 100.
Opposite, the Corr loss weight increases by the same value starting at zero. The
dynamical training batch size is set to generate one image in the first hundred
epochs and afterward to 20 images to calculate the Corr loss between multiple
images. Each quantum job contains 512 shots for training and inference. The
generator SPSA optimizer learning rate is set to c0 = 1 with an exponential
learning rate decay of 0.006 starting from epoch 50. All these settings showed
the best performance in the tests.
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3.3 Quantum Circuit Study

The ideal circuit should contain a certain, optimized to be minimal, number of
parameters to achieve a sufficient level of accuracy. Different circuit architec-
tures were compared to each other based on characteristic numbers expressing
the power of the circuit. The circuits employ trainable rotational gates and
two-qubit entanglement gates. As the angle encoding primarily uses the qubits
y-axis component, we predominantly employ Ry gates. For some circuit archi-
tectures, we test if additional z-rotational gates (Rz gates) or deeper circuits
with depth 2 (denoted as d2) can further improve the results. We use two-qubit
controlled-not gates (cx gates) native on IBM Quantum (IBMQ) [32] devices;
while other entanglement gates are compositions of multiple native gates of
the hardware. Keeping an eye on the goal of executing the training on a real
quantum device, the absolute number of decomposed gates should be kept as
small as possible.

The characteristic circuit numbers used in this study are the number of
trainable parameters Np, the expressibility X and the entanglement capability
E. Larger circuits with more trainable parameters are potentially capable of
achieving more accurate results. However, it might be that a plateau is reached
at some point where the same task can be solved with similar accuracy by a
smaller circuit, which is being investigated here. The definitions for X and E
are from reference [33]: X describes how well the circuit can represent the pure
states of the representative Hilbert space. For a single qubit the expressibility
exhibits how many states of the Bloch sphere can be represented. In this paper,
we measure 1 −X: the closer to 1 the better the expressibility of the model,
while the closer to 0 the worse. The entanglement capability E is a measure
that expresses the ability of a circuit to generate entangled states between the
qubits. Likewise, E ranges from 0 to 1, where 1 represents the best achievable
value. The circuit architectures under study are introduced in the appendix
A. Their corresponding characteristic numbers and theoretical potential are
provided in the appendix B. In the following, the circuits are evaluated for the
calorimeter use case.

We start by interpreting the results displayed in figure 4. The MSE accuracy
metric is calculated by taking the pixel-wise MSE between the average Geant4
and QAG images. The training is repeated 25 times for each circuit and the
mean and standard deviations are plotted. To prevent the influence of outliers,
the best and worst two trials are discarded in this analysis. The MSE is given
as a function of: Np on the left, X in the middle, and E on the right. By
inspecting the plots, it can be recognized that the MSE does not correlate with
any of the characteristic circuit values in the plots, neither do the characteristic
values correlate among themselves, as shown in the appendix B.

The MERA-up, MERA-up d2, and MERA-up Rz architecture perform
best with the lowest MSE. This is consistent with the observation that they
maintain a high X and E, as provided in the appendix A. The error bars pro-
vide a hint about the training stability. It can be observed that the better the
average MSE of a model, the smaller its standard deviation.
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Fig. 4: The MSE uncertainty (the smaller, the better) of the various trained
circuit architectures as a function of Np (left), X (middle) and E (right), see
text for explanations. Green rectangles mark optimal areas.

(a)

Fig. 5: The unweighted loss values as a function of the training epochs.

All in all, the MERA-up Rz circuit clearly performs best considering the
characteristic circuit values and the achieved accuracy in training. However,
with the emphasis on a low number of Np, the plain MERA-up circuit performs
almost as well, while needing only half the number of parameters. Therefore,
the following studies employ the MERA-up circuit for training the QAGmodel.

4 In-depth Accuracy Analysis

In this section, we analyze the results of the QAG model operating the
MERA-up circuit architecture. We showcase typical accuracy metrics for the
calorimeter simulation in HEP.
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(a) (b) (c)

Fig. 6: The average calorimeter shower shapes are visualized in (a). The energy
is provided in an arbitrary unit (a.u.) due to image downsampling. (b) The
pixel-wise correlation plot of Geant4 and (c) the one of the QAG model.

4.1 Training Evaluation

In a first step, the statistical trends of the objective functions during training
are investigated. In figure 5, the unweighted loss functions (excluding loss
weights) are plotted as a function of the training epochs. The mean of twenty
training repetitions is visualized as a thick solid line and the standard deviation
(STD) as a colored band. The Corr loss starts influencing the training only at
epoch 100 because its weight is set to zero before.

The MMD loss of all training repetitions converges stable, and the STD
band narrows towards the end of the training. Overall, the MMD and Corr loss
converge smoothly without strong oscillations, which is a desirable character-
istic for stable (Q)ML training. The MMD loss contributes far more than the
Corr loss throughout the training. However, the Corr loss plays a significant
role in achieving good physics accuracy in the generated shower images.

4.2 Inference Evaluation

In the following, the accuracy in inference is evaluated. The generated images
of the best trained model are compared to the Geant4 test data, which consists
of 980 images. Likewise, there are 980 images generated by the QAG model to
create the following accuracy metrics.

1. Average calorimeter shower shape: The first metric represents the
calorimeter shower shape displayed in figure 6a. The shower shape is perfectly
reproduced by the QAG model. The MSE corresponds to 0.00059 ± 0.00037,
which is extremely close to zero, indicating a very good accuracy.

2. Pixel-wise correlation: The second metric corresponds to the pixel-
wise image correlation. The positive or negative correlation patterns between
all the pixels are determined. The baseline represents the correlation from
Geant4 in figure 6b. The correlation for the generated data of the QAG model
is presented in figure 6c. It can be derived that the overall correlation pat-
tern is accurately reproduced by the QAG model. Like the Geant4 data, it
consists of a larger and more compact positively correlated group of pixels.
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(a)
(b) (c)

Fig. 7: (a) The energy sum histogram, (b) the four k-means clusters present
in the images of Geant4, and (c) for QAG.

The other pixels are negatively correlated. Inspecting the particular details,
different color shades indicate some minor deviations. However, the achieved
correlation precision by QAG is astonishing. Therefore, it can be concluded,
that the quantum circuits are capable to reproduce complex correlation pat-
terns through substantial entanglement strategies, as present in the MERA-up
architecture.

3. Energy sum: The energies contained in all pixels calculated for the
individual images represent the third accuracy metric. In figure 7a, the energy
sum histogram of the Geant4 images reveals a Gaussian shape and is correctly
reproduced visually by the QAG model, which is also confirmed by the mean
µ and the standard deviation σ.

4. k-means Clusters: This metric evaluates if the QAG model can cor-
rectly represent specific image modes. The Geant4 data is clustered with the
k-means algorithm [34] to find four clusters or image modes as illustrated in
figure 7b. Cluster 0 deposits substantially larger fractions of energy in earlier
calorimeter cells than in higher cluster numbers. Further, the particles from
clusters 0 and 1 contain a larger energy fraction, estimated by the integral
area below the curves. Here we are interested in whether the QAG model can
reproduce this behavior. The four clusters of the QAG images are provided in
figure 7c. A similar structure can be observed, which indicates a good accuracy
in reproducing the energy contents and image modes on average.

5. Pixel-wise energy distribution: The last metric is used to examine
the distributions of the energy content of each pixel, as illustrated in figure 8.
Overall, the histograms of the QAG model match those of the Geant4 model.
Even pixels with non-Gaussian energy distributions in the Geant4 model are
correctly reproduced by the QAG model. For example, the longer tail towards
smaller energies on the left side of pixel 4 is equally present in the histogram
for the QAG model. The large histogram overlaps indicate that not only the
averages are reproduced with high accuracy, but also the energy distributions
returned for each individual pixel are correct.
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Fig. 8: Energy content histograms for the individual pixels for the Geant4 and
the QAG model. The x-axis represents the energy depositions in one pixel and
the y-axis the number of counts in each energy bin.

5 Quantum Noise Study

In the current NISQ era, relatively high hardware error levels are one of the pri-
mary limitations to effectively employing algorithms on real quantum devices.
Similar as in the classical case, QML models appear to be noise resilient to
some degree of hardware errors [35–38]. In the following, the robustness of
the QAG model to simulated noise is tested in inference and training. Fur-
thermore, training and inference are executed on real quantum devices with
measured noise levels and compared to the results with simulated noise.

5.1 Inference

In a first step, quantum noise is applied only to the inference of a model trained
without noise. Inference is performed using three different noise configurations:
simulated noise at varying levels, simulated noise derived from the later used
hardware, and finally, with the real quantum hardware. In the simulated noise
configurations, each qubit noise is modeled with the same readout measure-
ment error, and each inter-qubit connection with the same two-gate (CNOT)
error. In the combined noise model both are on the same level. In contrast, the
hardware noise levels can vary widely for individual qubits as well as for gates.

Multiple noise configurations and error levels from zero up to 15% are
tested. The MSE is utilized as the accuracy measure. The results are illustrated
in figure 9. For each configuration, the average value of 20 generated images
is plotted in dependence of the noise level as a solid line and the standard
deviation as a colored band around the mean. The gray horizontal line serves as
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Fig. 9: Inference noise study. On the x-axis the noise levels are provided and
on the y-axis the MSE as accuracy metrics (the lower, the better). Inference
is executed with various noise configurations and on real quantum hardware.

accuracy reference for the noise-free configuration. All configurations maintain
sufficient accuracy up to approximately 1.5% of noise. The configuration with
readout noise only (green) is most robust and maintains a stable accuracy
of up to 8% of noise. CNOT noise only (blue) and both readout noise and
CNOT noise combined (orange) experience a stronger impact. As expected,
the combined configuration (orange) performs worst. As a side note, current
quantum devices have average noise levels below 5%, which is expected to
gradually decrease further. But as discussed in the following, the noise levels
are unstable and can sometimes spike up. Therefore, wider noise ranges were
investigated.

Next, the inference is run by loading the real hardware noise model from
ibmq montreal into the simulator. The ibmq montreal device consists of a
Falcon r4 processor with 27 qubits. The average readout noise over the qubits
employed at the time of the test is 2.51% and the average gate noise level
is 0.97%. The explicit noise model, containing the entries for each qubit, is
provided in the appendix in figure 11b. The result is included in figure 9 (blue
triangle). The noise level position (x-axis) is determined as the average of
readout and CNOT noise. Although the noise levels of the qubits vary strongly,
the measured accuracy of the hardware noise simulation agrees well with the
simulated noise in mean and standard deviation within the uncertainties. This
suggests that a model trained without any noise would theoretically be able
to run inference on noisy hardware without a significant drop in accuracy.

Finally, the inference is executed on the real ibmq montreal device. The
result is plotted as a red triangle in figure 9. The accuracy on the real hardware
is worse than predicted by the simulation, as indicated by a larger MSE value.
The decomposition of the circuit to the real hardware includes swap operations,
which imply additional two-qubit entanglement gates for the quantum circuit.
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Fig. 10: Training noise study with various noise configurations, inclusive hard-
ware noise simulations and training on the real hardware. The training with
fake noise levels are repeated ten times.

It is possible that these are not included in the hardware noise simulation and
lead to higher noise influence on real hardware and thus to worse results.

5.2 Training

The noise study is repeated to include noise also during training. We study if
the QAG model can learn to compensate for noise in training, especially when
running on the real quantum device. Besides, we investigate with which noise
values the model can still maintain a reasonable accuracy.

The results are provided in figure 10. The configurations with readout
noise (green) and CNOT noise (blue) maintain a similar level of accuracy until
approximately 3%. The accuracy of the combination of readout and CNOT
noise (orange) decreases marginally from 1% of noise and further with larger
noise levels. However, at 3% of noise, its accuracy is still close to the noiseless
case, staying within one standard deviation. This indicates that training the
model with noise makes the QAG model more robust than only applying noise
to a trained model in inference only.

Next, two quantum devices are simulated. ibmq montreal and ibm cairo,
which are both 27 qubit devices, but ibm cairo has the more advanced Falcon
r5.11 processor. Likewise, the training is repeated ten times and the results are
added as blue and orange triangles in figure 10. It can be noted that the average
accuracy of the training with hardware noise performs slightly worse than the
simulated combined noise model (orange line). The strong overlap between
the error from the noise simulation (orange band) and the hardware noise
simulation (orange and blue error bar) indicates that the accuracy difference
is statistically not significant.
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(a) (b)

Fig. 11: The noise levels of the ibmq montreal device are shown on the left
before and on the right after the calibration change during training. The infer-
ence tests are performed with the right noise model. It can be seen, that the
readout noise of qubit number five increased from two to over eight percent.

Finally, the entire training was executed on the real quantum device. First,
the training was carried out on ibmq montreal. During training, around epoch
280, an unpredicted significant noise change occurred and the readout noise
of one qubit increased to 8%, as shown in figure 11. As a result, the MMD
loss spikes up, as shown in figure 12a. This negatively influenced the train-
ing. However, after the noise change during training, the model recovered and
adapted to the new noisy environment. In the still remaining number of epochs
the loss decreased to a modest level. The training was repeated on the best
performing ibm cairo device without having a hardware calibration change
during training, and the training losses are shown in figure 12b.

The results of both hardware training are included as red and green trian-
gles in figure 10. The error bars correspond to the accuracy deviations within
50 generated validation images. It can be observed that the average accuracy
of the ibmq montreal hardware training (red) is visibly worse than the noise
simulation (blue). This is most likely due to the large noise increase and the
fact that the model did not have enough remaining epochs to fully recover.
This is also indicated by the still decreasing losses towards the end of the
training. As mentioned above, the training was repeated on the more stable
machine ibm cairo. This time, the training was completed without calibration
changes and with about 1% lower hardware noise level (readout noise 0.86%
and CNOT noise 0.89%). The accuracy of the hardware training on ibm cairo

(green) is only marginally worse than the one from the simulator (orange).
This indicates that the simulated and real hardware results behave similarly
for low hardware noise levels. This fulfills the expectations derived from the
pure simulation that exhibit only statistically insignificant variations in the
very good accuracy at these low noise levels.

Comparing the absolute MSE magnitude of the real hardware training
(≈ 0.002 and ≈ 0.003) with the one from inference from the previous section
(≈ 0.005), the accuracy improved, suggesting that the QAG model is able to
adapt its parameters to the noisy hardware to improve its precision. This is
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(a) (b)

Fig. 12: The losses during training for ibmq montreal on the left and for
ibm cairo on the right.

also confirmed by the ibmq montreal training, where the accuracy worsened
entirely after the calibration change, but then recovered. In the appendix in
figure C3a, the average shower image created by the ibmq montreal device is
visualized, and in figure C3b by ibm cairo. The shower image of ibm cairo

agrees well with Geant4, whereas ibmq montreal exhibits some deficiencies
because of the missing remaining training epochs after the calibration.

6 Conclusion

The results of this study clearly demonstrate that the newly developed QAG
model is capable of generating images with good precision, as measured with
a variety of validation metrics. This includes correctly reproducing average
values, but most importantly, also complex pixel-wise correlations with the
chosen optimal MERA-up quantum architecture. These results reveal that
the QAG model with a good entangled circuit is capable of learning intrinsic
correlation patterns from the training data.

Our study exhibit the significant impact that quantum hardware noise
can have on the accuracy of quantum machine learning models. The results
evidence that training the models with noise leads to better performance (sta-
ble until 3% noise) because the QAG model adapts to the underlying noise
behavior and converges faster in contrast to the situation of applying noise
in inference only (stable until 1.5% noise). This was also verified on the real
hardware by the ibm cairo training. Furthermore, our study shows that the
QAG model is robust and can produce accurate results even with significant
hardware calibration changes with up to 8% noise, as demonstrated by the
training on ibmq montreal. Overall, the newly developed QAG model demon-
strates that training quantum machine learning models with realistic quantum
hardware noise can lead to robust models and accurate results, which is of
great importance for the future development of real world quantum machine
learning applications.
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Appendix A Quantum Circuit Architectures
under Study

The quantum circuit architectures investigated in this paper are summarized
in figure A1. In general, it was observed that hierarchical architectures perform
best while maintaining a reasonable number of quantum gates and param-
eters. Specifically, we examine the Tree Tensor Network (TTN) architecture
and Multi-scale Entanglement Renormalization Ansatz (MERA) introduced in
reference [39]. Multiple variations of these circuits are tested: 1) circuits with
a depth two (naming scheme ”d2”). These circuits contain two layers, with
all circuit gates placed twice, to evaluate if deeper circuits perform better. 2)
Circuits additional with Rz-gates are employed after each Ry-gate (naming
scheme ”Rz”) to assess if rotations around an additional axis can improve the
accuracy. Both architecture variants double the number of parameters of the
initial circuit.

For the MERA architecture, further variations are analyzed where only
the right circuit half from the original architecture is implemented, denoted
as the MERA upsampling (MERA-up) circuit. In the MERA-up circuit, the
information is upsampled from the central qubit and spread to all the other
qubits, similar to what happens in classical ML generative models, for example,
transpose convolutional neural networks. The left half of the MERA circuit,
the MERA downsampling (MERA-down) architecture, is not tested because
it would rather compress the information as required in classification tasks
that are not used in this paper. The last architecture contains a simple linear
entanglement strategy.

In reference [33], multiple complex four-qubit architectures are compared.
However, these architectures are not exploited in our study. The reason is most
of them contain many more gates and parameters, and they do not scale well
for more than four qubit circuits. Also, many architectures employ parame-
terized two-qubit rotational gates which we found, taking the decomposition
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Fig. A1: The basic quantum circuit architectures under study. Top left: TTN
architecture, top right: Linear entanglement architecture, bottom: the full cir-
cuit corresponds to the MERA architecture, with the red highlighted section
corresponding to the MERA-up architecture.

into account, not as effective as the combination of separate rotation and
entanglement gates.

Appendix B Characteristic Circuit Numbers

The results of evaluating the characteristic circuit numbers (number of param-
eters Np, expressibility X and entanglement capability E) are shown in figure
B2. In figure B2a E is plotted as a function of X. The MERA Rz and MERA-
up d2 Rz architecture perform best and lie almost on top of each other in the
top right corner, directly followed by MERA-up Rz and TTN Rz. The Lin-
ear architecture and the basic TTN perform worst. It can be clearly noted
that circuits with more gates (Rz, d2) perform better. Np is studied in figure
B2b and figure B2c. It can be seen that the best two circuits – MERA Rz
and MERA-up d2 Rz – contain by far the largest number of parameters.
However, a more limited number of parameters is desirable to address NISQ
hardware limitations. The MERA-up Rz and TTN Rz architectures contain
approximately half the number of parameters compared to the MERA Rz and
MERA-up d2 Rz circuits but perform almost similarly accurately. Therefore,
they may be preferred in practice. Further reducing the number of parameters,
the MERA-up architecture with only Np = 23 parameters maintains adequate
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(a) (b) (c)

Fig. B2: Study of potential correlations between the three characteristic cir-
cuit numbers. On the left: X versus E. In the middle: Np versus X. On the
right: Np versus E.

Table B1: The characteristic circuit values Np, X and E are listed. Addition-
ally, the statistics of the MSE accuracy metrics are provided for the individual
circuits for repeating the training 25 times on the calorimeter data set.

Circuit Name Np X E MSE
Linear 16 0.8191 0.261 0.00113 ± 0.0008

TTN 29 0.8068 0.462 0.00245 ± 0.0012

TTN Rz 58 0.9912 0.918 0.00440 ± 0.0022

MERA 45 0.9564 0.855 0.00220 ± 0.0011

MERA Rz 90 0.9997 0.959 0.00634 ± 0.0036

MERA-up 23 0.9377 0.894 0.00059 ± 0.0004

MERA-up d2 46 0.9715 0.906 0.00038 ± 0.0002

MERA-up Rz 46 0.9961 0.926 0.00047 ± 0.0005

MERA-up d2 Rz 92 0.9999 0.954 0.00094 ± 0.0008

values for E and X and is the baseline circuit for the more detailed studies. All
characteristic circuit numbers measured in the circuit study are summarized
in table B1.

Appendix C Full Training on Quantum Device

The average shower images of the quantum hardware training are correctly
reproduced, as provided in figure C3. The correlation plot for the ibm cairo

training is provided in figure C3c. The overall correlation pattern is cor-
rectly reproduced. All in all, the model trained on ibm cairo shows a good
performance.
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(a) (b) (c)

Fig. C3: On the left, the average shower images of the QAG model are trained
on ibmq montreal and in the middle on ibm cairo. The correlation plot on
the right is created for the ibm cairo training.
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