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Simulating many-body quantum systems is a
promising task for quantum computers. How-
ever, the depth of most algorithms, such as
product formulas, scales with the number of
terms in the Hamiltonian, and can therefore
be challenging to implement on near-term, as
well as early fault-tolerant quantum devices.
An efficient solution is given by the stochastic
compilation protocol known as qDrift, which
builds random product formulas by sampling
from the Hamiltonian according to the coeffi-
cients. In this work, we unify the qDrift pro-
tocol with importance sampling, allowing us
to sample from arbitrary probability distribu-
tions, while controlling both the bias, as well as
the statistical fluctuations. We show that the
simulation cost can be reduced while achieving
the same accuracy, by considering the individ-
ual simulation cost during the sampling stage.

Moreover, we incorporate recent work on
composite channel and compute rigorous
bounds on the bias and variance, showing how
to choose the number of samples, experiments,
and time steps for a given target accuracy.
These results lead to a more efficient imple-
mentation of the qDrift protocol, both with
and without the use of composite channels.
Theoretical results are confirmed by numeri-
cal simulations performed on a lattice nuclear
effective field theory.

1 Introduction
The simulation of quantum systems is arguably one of
the most promising applications for quantum comput-
ers [1]. Hence, the exponential scaling of the Hilbert
space, or the infamous sign problem in Monte Carlo
techniques [2], makes it a notoriously difficult task
for classical devices. On the other hand, the resource
requirements for quantum simulations are only sub-
ject to polynomial growth in many practical circum-
stances, as in the simulation of local Hamiltonians [3],
and more particularly in spin chains [4]. Hence, quan-
tum computers offer a natural paradigm for Hamilto-
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nian simulations, with numerous applications in nu-
clear [5–7] and condensed matter physics [8–12], quan-
tum field theory [13–15] and quantum chemistry [16–
20]. For instance, quantum simulations have been ap-
plied to the computation of energy levels via quantum
phase estimation [21], chemical reaction rates predic-
tions [22], correlation functions [8, 9, 23, 24], neutrino
oscillations [25, 26] and scattering experiments [27–
29].

Given a Hamiltonian H written as the sum
of L multi-qubit operators, typically expressed as
Pauli strings, the solution of the time-independent
Schrödinger equation is obtained through the expo-
nentiation of the Hamiltonian in question. One of the
most popular and straightforward techniques to com-
pute this matrix exponential is given by product for-
mulas, such as Trotterization and higher order Trot-
ter-Suzuki decomposition [30–33], due to their sim-
plicity and high performance in practice, which is usu-
ally much better than the worst case analytical error
bounds [4, 34].

However, one main drawback of product formulas
is their relative high cost to accuracy ratio. Hence,
their gate count increases proportionally to the num-
ber of summands L in the Hamiltonian. Even if the
asymptotic scaling is favorable, the pre-factor might
be significant enough [27, 35, 36] to create problems
in practice. Hence, deep circuits usually exceed the
coherence time of NISQ devices, and would also be
problematic for early fault-tolerant quantum hard-
ware as well. Following [37] we define (N)ISQ devices
as (noisy) intermediate scale quantum devices, com-
posed of a few hundred qubits, and equipped with
error correction (error mitigation) protocols that can
correct up to a limited amount of error. Hence, both
NISQ and ISQ devices are limited in size and depth,
making it a priority to improve the complexity of cur-
rent quantum algorithms. We refer to [38] and [39, 40]
for informative reviews, where the former is theoreti-
cal, and the latter focus on practical applications on
NISQ devices.

Randomization has proven to be an important tool
to improve the accuracy and efficiency of product for-
mulas. Childs et al. [41] achieved better gate-com-
plexity by randomizing the ordering of the terms in
the Hamiltonian, Faehrmann et al. [42] increased the
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order of the product formula by averaging over dif-
ferent time slices, while Wan et al. [43] proposed a
randomized quantum phase estimation procedure in-
dependent of L. More recently, Cho et al. [44] doubled
the order of product formulas by introducing random
corrections. Hence, stochasticity can turn coherent
errors into incoherent ones, making the error scaling
behave as a random walk [45–48]. Even if those im-
provements are considerable, none of these methods
really address the scaling with L, which can be a large
pre-factor for many relevant situations.

For this reason, Campbell [49] introduced qDrift, a
protocol to build product formulas by sampling over
the coefficients, whose length does not depend specifi-
cally on L, but on the square of the simulation time t2

and on the spectral norm of the Hamiltonian λ. Chen
et al. [50] improved the error bound on the bias and
showed that one experiment of the qDrift protocol
converges exponentially fast towards its expectation
value, while Ouyang et al. [17] combined the advan-
tages of qDrift and first-order Trotter formula to sim-
ulate the Hamiltonian through sparsification. Finally,
Nakaji et al. [51] proposed a higher order qDrift pro-
tocol, known as qSwift, by adding correction terms to
the standard qDrift approach.

The main contributions of this paper are the gen-
eralization of the qDrift protocol for arbitrary sam-
pling distribution and the expansion of the results
from Ref. [50] to multiple qDrift executions and com-
posite channels with multiples Trotter steps. Sam-
pling from arbitrary distributions has numerous ben-
efits, such as allowing for a direct reduction of the
actual simulation’s cost in terms of native gates, or
expanding qDrift to situations where it might be dif-
ficult to sample directly from the coefficients. For in-
stance, we propose an alternative sampling distribu-
tion, which decreases the simulation cost, such as the
total CNOT count. Moreover, this paper gives a rigor-
ous understanding of the behavior of qDrift and com-
posite channels with multiple experiments. We show
that qDrift can be efficiently parallelized on multiples
devices, and we give a rigorous formula for choosing
the number of qDrift samples N , experiments M , and
Trotter steps r, for a given accuracy ε and simulation
time t. We hope this paper to be a starting point to
build qDrift protocols tailored to certain applications
and computing devices.

Even if we restrict ourselves to time-independent
problems, we note that the present work can be di-
rectly applied to time-dependent situations through
the continuous qDrift [52] protocol. We note that
alternative and more refined techniques exist, using
extra ancillary qubits and complex gadgets, such as
qubitization/quantum signal processing [53, 54], and
linear combination of unitaries [55–57]. They usually
offer better asymptotic scaling, but are more chal-
lenging to implement in practice and fall outside this
paper’s scope.

The relevant background and notations are covered
in Section 2, with Section 2.2 recalling the qDrift pro-
tocol. We introduce importance sampling for stochas-
tic quantum simulations in Section 3.1, while rigor-
ous bounds on the bias, variance, and fluctuation are
shown in Section 3.2. Section 3.3 unifies the impor-
tance sampled qDrift with composite channels, mix-
ing Trotter and qDrift product formulas. Section 4
focuses on practical applications that benefit from
this general framework, such as cost reduction and
Hamiltonian partitioning. Finally, numerical simula-
tions are performed in Section 5. Rigorous proofs of
the stated theorems can be found in the appendices
A and B for the results and applications sections, re-
spectively.

2 Preliminaries
In this section, we introduce the background and no-
tations adopted throughout this paper. We denote by
‖ · ‖ the spectral norm, ‖ · ‖1 the trace norm and by

‖U − E‖� := max
ρ
‖(U ⊗ 1k − E ⊗ 1k)ρ‖1, (1)

the diamond norm distance between two quantum
channels U and E . We note that the maximum is
taken over all (n+ k)-qubit states, where n is the di-
mension of E and k ≥ 1. In the remaining of this pa-
per, we consider a time-independent n-qubit Hamilto-
nian, in the form of a (2n, 2n) Hermitian matrix with
the following decomposition into L summands

H =
L∑
l=1

hlHl, (2)

with ‖Hl‖ = 1 and hl > 0. We denote λ =
∑
l hl the

norm of the Hamiltonian and Λ := maxl(hl).

2.1 Deterministic Trotter product formulas
Given a Hamiltonian H, the first order Trotter prod-
uct formula is built by exponentiating all the individ-
ual terms as

U(t) =
∏
l

e−ithlHl . (3)

The usual technique for long-time simulations is to
split the time into r fragments and to repeatedly ap-
ply U(t/r), which are known as Trotter steps. Analyt-
ical work [41] shows that the Trotter error ε is upper
bounded by

ε ≤ L2Λ2t2

2r eΛtL/r. (4)

Better error scaling can be achieved by considering
higher order product formula, which typically requires
a symmetric extension or randomization, leading to
deeper circuits, while tighter error bounds with com-
mutator scaling have been found by Childs et al.
[58]. Despite theirs simplicity, Trotter formulas are
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performing surprisingly well and often much better
than the predicted bounds, making them the default
choice in many situations, including early fault toler-
ant quantum hardware.

Since we will be dealing with quantum channels, it
is useful to recall how time evolution is performed in
the density matrix formalism. Given a unitary oper-
ator U(t) and a density matrix ρ, the time evolution
is computed as

ρ(t) = U(t)[ρ] = U(t)ρU†(t), (5)

where U(t) is the unitary channel of U(t).

2.2 The qDrift protocol
One of the main drawbacks of Trotter-Suzuki decom-
positions is their gate count. Hence, every term in
the Hamiltonian, see Eq. (2), must be simulated se-
quentially, leading to deep circuits in many relevant
use cases. The resulting quantum circuits are there-
fore heavily affected by noise on NISQ devices and are
time-consuming on fault-tolerant hardware, motivat-
ing the search for more efficient algorithms. Campbell
[49] remarked that the gate count can be significantly
reduced in some regimes by considering the relative
importance of each term Hj in the Hamiltonian, given
by the corresponding coefficient hj . The qDrift proto-
col builds an approximate channel E(t;N,M), which
is randomly constructed by sampling terms from the
Hamiltonian according to the magnitude of the coeffi-
cients. We call t the simulation time, N the number of
qDrift samples, and M the number of qDrift experi-
ments. In practice, a qDrift experiment is sampled
from the product distribution pN (j) = λ−N

∏N
k=1

hjk , where each terms is sampled with probability
p(j) = hj/λ, and j = (j1, j2, ..., jN ) a multi-index,
leading to

Vj(t) =
N∏
k=1

e−iτjkHjk , (6)

for appropriately chosen time steps τjk . The qDrift
channel is ultimately built as the arithmetic average
of the M individual experiments

E(t;N,M)[ρ] = 1
M

M∑
m

[
VjmρV

†
jm

]
, (7)

as summarised in Algorithm 1, with the sampling dis-
tribution q(j) = p(j) := hj/λ. We note that the su-
perscript m of the bold multi-index jm refers to the
multi-index j of the m-th experiment, while jmk to its
corresponding k-th component. We note that we use
the notation q(j) and qj interchangeably throughout
the paper.

In the asymptotic limit of infinite experiments, this
will then converge to the following average qDrift

Algorithm 1: stochastic quantum
empty spacei simulation
Input: Hamiltonian H =

∑L
l=1 hlHl with

interaction strength λ =
∑
l hl, hl > 0

and ‖Hl‖ = 1, total simulation time t,
number of samples N , number of
experiments M and initial state ρ.
Probability density distribution q(j).

m← 1;
E ← 0;
while m ≤M do

V ← 1;
n← 1;
while n ≤ N do

sample j ∼ q(j);
τj ← thj/(q(j)N);
V ← e−iHjτjV ;
n← n+ 1;

end
E [ρ]← E [ρ] + V ρV † ;
m← m+ 1;

end
ρ← 1

M E [ρ];
Output: final state E(t;N,M)[ρ]

channel

E(t;N)[ρ] = EpN [E(t;N, 1)[ρ]]

=
L∑

j1=1
· · ·

L∑
jN=1

pN (j)Vj(t)ρV †j (t) ,
(8)

where Ep[f(x)] =
∑
x p(x)f(x) is the expectation

value of an arbitrary function f(x) and sampling dis-
tribution p(x). The special case with N = 1 leads
to

E(t; 1)[ρ] =
L∑
j=1

p(j)e−iτjHjρeiτjHj , (9)

which we will call the deterministic qDrift channel.
The strength of each unitary is fixed to a constant

τj := τ = tλ/N , which is chosen such that the qDrift
channel is equal to the first order Trotter product for-
mula, up to first order in the Taylor expansion, with
an upper bound on the diamond norm given by∥∥U(t)− E(t;N)

∥∥
� ≤

2λ2t2

N
e2λt/N , (10)

We note that this bound has been improved [50] to∥∥U(t)− E(t;N)
∥∥
� ≤

2λ2t2

N
. (11)

The deterministic channel can be used to parallelize a
Trotter product formula for small time scales, where
every Hl is simulated simultaneously and indepen-
dently on different quantum devices, or by using dif-
ferent qubits of the same device. This scheme essen-
tially trades the circuit’s depth with measurements.
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Expectations values can then be obtained by post-pro-
cessing. However, since the number of circuits grows
exponentially with the number of slicing steps r, this
application is impractical for long-time scales or large
L, but could benefit NISQ devices which often fail in
this regime due to the noise.

2.3 Importance sampling
Importance sampling is a useful technique to compute
expectation values

Ep[f(x)] =
∑
x

p(x)f(x), (12)

when the distribution p(x) is difficult to sample from,
or as a way to reduce the variance. Frequently used in
Monte Carlo integration, the trick is to sample from
an alternative, in some cases considerably easier, dis-
tribution q(x) > 0 and re-weight accordingly

Ep[f(x)] =
∑
x

q(x)p(x)
q(x)f(x) ≡ Eq[ω(x)f(x)], (13)

with ω(x) := p(x)/q(x) is the re-weighting factor. We
can easily see that this gives us an unbiased estima-
tor of the expectation value of interest, while the vari-
ance depends on the choice of q(x). With an adequate
choice, the variance can be significantly reduced, lead-
ing to less expensive calculations. We guide the reader
to [59] for an informative review on the topic.

3 Results
The first results presented in this section, are the ap-
plication of importance sampling to the qDrift pro-
tocol and the computation of the corresponding bias,
variance and fluctuation bounds. The second set of
results unifies this framework with composite chan-
nels. We will begin by introducing the importance
sampled qDrift.

3.1 Importance sampled qDrift
To better understand the paradigm shift, we adopt
the Liouvillian representation of a unitary channel
e−iHt

E(t)[ρ] = eiHtρe−iHt ≡ etL(ρ) =
∞∑
n=0

tnLn(ρ)
n! , (14)

with

L(ρ) = i(Hρ− ρH) = i[H, ρ]. (15)

We first write the qDrift channel, sampled from an
arbitrary distribution q(j) as

Ēq(t; 1)[ρ] =
∑
j

q(j)e−iτjHjρeiτjHj

≡
∑
j

q(j)eτjLj (ρ)

=

1 +
∑
j

q(j)τjLj +
∞∑
n=2

∑
j

q(j)τnj Lnj

 (ρ) .

(16)

We then choose τj so that we match the ideal channel
to linear order, that is∑

j

q(j)τjLj = t

N

∑
j

hjLj

= tλ

N

∑
j

hj
λ
Lj

= tλ

N

∑
j

pjLj .

(17)

Since the bias at the second order in t/N cannot be
matched with any choice of q(j), we focus on the part
which is linear in time. For ease of notation, we in-
corporate the constant factor inside the generators as

L̃j = tλ

N
Lj . (18)

The expectation value of a qDrift sample is then in
the right form and can be written as

Ep
[
L̃j
]

=
∑
j

pjL̃j

=
∑
j

qj
pj
qj
L̃j

=
∑
j

qjωjL̃j

= Eq
[
ωjL̃j

]
.

(19)

Therefore, the channel can be written as

Ēq(t; 1)[ρ] =
∑
j

qj exp
(
ωj
tλ

N
Lj(ρ)

)

=
∑
j

qj exp
(
t

N

hj
qj
Lj(ρ)

)
,

(20)

where we used the explicit expression for pj , and find

τj = thj
Nqj

. (21)

We note that, contrary to the standard qDrift, the
strength of each unitary τj is now dependent on j.
The procedure is summarised in Algorithm 1, which
is a generalisation of the regular qDrift protocol for
arbitrary sampling distribution.
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3.2 Bias, variance and fluctuation bounds
In this section, we compute the bias, concentration
and fluctuation bounds for the importance sampled
qDrift channel, as a function of the sampling distri-
bution q(j), simulation time t, number of samples N
and number of experiments M . We remark that for
q(j) = p(j), we recover the usual bounds, meaning
that our framework is a natural extension of the stan-
dard qDrift implementation. For the ease of nota-
tions, all minimum values of N , M and r, which are
integer numbers per definition, are given in function
of ε, t and λ, which may not lead to integer value num-
bers. Hence, they should be rounded up to the next
integer in practical situations. Borrowing the proof
strategy from [50, Proposition 3.2 ], we will now pro-
vide an upper bound on the error of the bias. We
refer to Appendix A for the complete proofs of the
presented results.

Theorem 1 (Bias error bound). Let U(t) be the uni-
tary channel of a first-order Trotter product formula,
Eq(t;N) an average qDrift channel with importance
sampling and ω(j) = p(j)/q(j) the re-weighting fac-
tor. The diamond norm distance between these two
channels for N = 1 is then upper bounded by∥∥U (t)− Eq (t; 1)

∥∥
� ≤ t

2λ2 (1 + Ep [ω(j)]) , (22)

leading to the following result

∥∥U (t)− Eq(t;N)
∥∥
� ≤

t2λ2

N
(1 + Ep [ω(j)]) (23)

for an arbitrary N .

We are now able to understand that importance
sampling can lead to an increase in the number of
qDrift samples N at fixed accuracy ε. In fact

Nq =
⌈
t2λ2

ε
(1 + Ep[ω(j)])

⌉
≥
⌈
t2λ2

ε
(1 + 1)

⌉
= Np,

(24)
implying Nq ≥ Np. Therefore, the standard qDrift
channel will always requires a smaller number of sam-
ples, however, as we will argue in the next section, the
total simulation cost can still be reduced by using im-
portance sampling, without sacrificing accuracy, since
we can favorise the sampling of cheaper circuits.

Now that we have generalized the error bound on
the bias, we need to understand how a finite impor-
tance sampled qDrift channel concentrates around its
expectation value. Hence, this will provide an esti-
mate of M and N , for a given accuracy ε and simula-
tion time t.

Theorem 2 (Concentration bound). Let Eq(t;N,M)
be a finite importance sampled qDrift channel on n
qubits and Vj instances of the NM unitaries that
make up the channel. Their concentration around

their expectation value can then be upper bounded
∀ε ∈ [0, 4tλ] as follows

Pr
[∥∥∥∥∥ 1
M

M∑
m

1∏
k=N

Vjm
k
− Eq [Vj ]N

∥∥∥∥∥ ≥ ε/2
]

≤ 2n+1 exp
{
− NMε2

11t2λ2(1 + maxk ω(k))2

}
.

(25)

In order to guarantee an approximation error ε/2 with
probability at least 1− δ, it is then sufficient to take

NM = 11 t
2λ2

ε2

(
1 + max

k
ω(k)

)2
(n+ 1) log

(
2
δ

)
.

(26)
This theorem gives us two important pieces of in-

formation. First, we learn that we can distribute the
resource budget across M and N , and that, for fixed
accuracy ε, the channel converges exponentially fast
towards the deterministic qDrift with their product.
Moreover, the qDrift channel can be efficiently sim-
ulated in parallel, since it concentrates exponentially
fast in M . This trade-off between circuit’s depth for
an increase in measurements has some advantages,
such as reducing hardware errors on NISQ devices and
shorter real-time simulation on fault-tolerant ones.
Secondly, we are now aware that the qDrift results
present in the literature also hold for any distribution
q(j), as long as their ratio is similar, i.e., if ω(j) ≈ 1.
This enables the design of alternative distributions,
which for example, produce less expensive circuits or
are easier to sample from. For instance, these results
can be directly transported to the continuous qDrift
protocol [52], where the continuous distribution is re-
placed with an easier one. In [52] the authors already
proposed to use a more readily available distribution
using norm upperbounds instead of norms. Our re-
sults here makes it easier to characterize both the bias
and the variance change induced by such a choice. We
will see in the next section how to choose q(j) to ob-
tain a guaranteed reduction in the simulation cost.

Finally, we compute the bound of the expected
fluctuations around the true evolution, following the
strategy of [50, Proposition 3.4].

Corollary 1 (Fluctuation bound). Let H be a n-
qubit Hamiltonian, q(j) an arbitrary distribution, t
the simulation time, N a fixed number of qDrift sam-
ples, and M a fixed number of qDrift experiments.
Set UH [ρ] = UHρU

†
H (with UH = e−iHt) and take the

importance sampled qDrift channel Eq(t;N,M). We
have

E [‖ Eq(t;N,M)− UH‖�] ≤ 2 t
2λ2

N
(1 + Ep[ω])

+ α
ntλ

NM

(
1 + max

k
ω(k)

)
+ α

√
n

NM
tλ

(
1 + max

k
ω(k)

)
,

(27)

with α being a numerical constant depending on H.
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We now have a better understanding of how to
choose N and M for a particular distribution q(j)
and desired expected accuracy, in diamond norm, ε.
In particular, if we choose N to control the bias to
ε/κ, with κ > 1, as follows

N = 2κt
2λ2

ε
(1 + Ep[ω]) , (28)

we then need to choose M so that

αtλ

(
1 + max

k
ω(k)

)(
n

NM
+
√

n

NM

)
≤ κ− 1

κ
ε .

(29)
Using the choice for N above, we have

tλ

(
1 + max

k
ω(k)

)
=
√
N

ε

2κ
1 + maxk ω(k)√

1 + Ep[ω]
, (30)

resulting in the condition

α

√
n

2M
1 + maxk ω(k)√

1 + Ep[ω]

(
1 +

√
n

NM

)
≤ (κ− 1)

√
ε

κ
.

(31)
Since N ≥ 1, for M ≥ n we obtain

M = n

ε

2α2κ

(κ− 1)2
(1 + maxk ω(k))2

1 + Ep[ω] . (32)

The parameter κ can be chosen to reduce N as much
as possible while controlling that M does not diverge.
In general, for a given κ and fixed choice for the distri-
bution q(j), we have the following asymptotic scaling

N = O
(
t2λ2

ε

)
, M = O

(n
ε

)
. (33)

We then see that, thanks to the concentration bound
in Theorem 2 depending on NM , the number of

qDrift experiments scales better than O(1/ε2) that
one would naively expect from shot noise.

3.3 Composite channels
We recall that the main goal of this paper is to re-
duce the actual implementation cost of random prod-
uct formulas when running on quantum hardware. We
remark that our framework can be naturally embed-
ded in the context of composite channels [60–62], and
use the deterministic nature of Trotter product for-
mula to further reduce the cost. Following [60], we
will first introduce composite channels, unify them
with our importance sampling scheme, and compute
the relevant bounds on the bias, variance and fluctu-
ation.

Given a partition of the Hamiltonian, a composite
channel is a composition of channels, which are used
to simulate the different terms in the partition. For
simplicity, we will only consider the case where H is
split into two parts H = A+B with decompositions

A =
∑
i∈IA

aiAi B =
∑
i∈IB

biBi , (34)

with ‖Ai‖ = ‖Bi‖ = 1 and IA and IB two sets of
indices, and use a deterministic formula for A and
a stochastic one for B. To better understand this
paradigm, we first perform an outer first order Trotter
decomposition

eitHρe−itH := eitAeitBρe−itBe−itA + EA,B(t), (35)

where EA,B is the error term. We then take

ŨA(t) to be an approximation to the unitary channel
UA(t)[ρ] = eitAρe−itA performing the evolution under
A (we consider here a first order product formula) and
EBq (t;N,M) the importance sampled qDrift channel
for the B term. If we define the composite channel
as Λq(t;N,M) = ŨA(t) ◦ EBq (t;N,M), and its corre-

sponding average channel Λq(t;N), one can show that
its diamond norm distance from the ideal channel UH
can be bounded as follows (cf. [60])

ε :=
∥∥UH(t)− Λq(t;NB)

∥∥
�

≤
∥∥∥UA(t)− ŨA(t)

∥∥∥
�

+
∥∥∥UB(t)− EBq (t;NB)

∥∥∥
�

+ ‖EA,B(t)‖�

≤t2
∑
i<j

aiaj‖[Ai, Aj ]‖+ 1
2
∑
ij

aibj‖[Ai, Bj ]‖+ λ2
B(1 + Ep[ω(j)])

NB

 .

(36)

If we split the total time into r segments and we use the union bound as usual, we find

∥∥∥∥UH(t)− Λq
(
t

r
;NB

)◦r∥∥∥∥
�
≤ t

2

r

∑
i<j

aiaj‖[Ai, Aj ]‖+ 1
2
∑
ij

aibj‖[Ai, Bj ]‖+ λ2
B(1 + Ep[ω(j)])

NB

 . (37)

Apart from the use of a general importance sample qDrift, and the use of the improved bound Eq. (11) obtained
in [50] for the error in the qDrift channel, this is the same result obtain already in [60]. Where we depart from
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their scheme is in the fact that we consider the possibility that evolution under different terms in the expansion
could have a different gate cost. If we denote by CAj and CBj the cost of the term j in either A or B, we can
bound the total cost of the composite channel as follows

C(ε, t) ≤r
(∑
l∈IA

CAl +NB max
j∈B

(
CBj
))

≤

(∑
l∈IA

CAl +NB max
j∈B

(
CBj
)) t2

ε

∑
i<j

aiaj‖[Ai, Aj ]‖+ 1
2
∑
ij

aibj‖[Ai, Bj ]‖+ λ2
B(1 + Ep[ω(j)])

NB

 (38)

The average cost instead can be estimated as

Eq[C(ε, t)] ≤
(
CAtot +NBEq

[
CB
]) t2

ε

(
ΓA,Bcomm + λ2

B (1 + Ep[ω(j)])
NB

)
, (39)

where we have denoted by CAtot =
∑
l∈A C

A
l the total cost for A and by ΓA,Bcomm the contribution containing the

commutators among the A terms and between the A and B partitions.

As was pointed out already in [60], the number of
qDrift samples NB per segment is now a completely
free parameter. Following the same strategy adopted
there, namely finding explicitly the minimum of the
cost, one obtains an optimal number of samples as

NB = λB

√
1 + Ep[ω(j)]

Eq [CB ]
CAtot

ΓA,Bcomm

. (40)

With this choice, the expected cost becomes

Eq[C(ε, t)] ≤ t
2

ε

(√
ΓA,BcommCAtot

+λB
√

Eq [CB ] (1 + Ep[ω(j)])
)2

.

(41)

Unfortunately, we cannot use directly the result for
the concentration bound in Theorem 2 since r com-
positions of the channel Λq(t;N,M) will require Mr

experiments to be implemented. It is thus convenient
to introduce another channel defined as

Ωq(t;N,M, r)[ρ] = 1
M

M∑
m=1

Λmq
(
t

r
;N, 1

)◦r
[ρ], (42)

obtained by averaging M channels composed r times
each. The superscriptm in Λmq is used to indicate that
for every experiment indexed by m the channel uses a
different sample of Nr indices. Note that in the limit
of infinite experiments Ωq(t;N, r) = Λq

(
t
r ;NB

)◦r
and

we can still use Eq. (37) to control the bias. For the
fluctuations around the average, we instead have fol-
lowing theorem.

Theorem 3 (Concentration bound for composite
channels). Let Ωq(t;N,M, r) be a composite channel
on n qubits for the Hamiltonian H = A+ B employ-
ing an approximate unitary ŨA ≈ e−iAt/r for the time
evolution under the term A and total time t/r, a fi-
nite importance sampled qDrift channel Eq(t;N, 1) to

approximate evolution under B and r steps using uni-
taries Wj = e−iBjτj/r with τj = (tbj)/(Nqj). Its con-
centration around its expectation value can be upper
bounded ∀ε ∈ [0, 4tλB ] as

Pr
[∥∥∥∥∥ 1
M

[ 1∏
s=r

(
ŨA

1∏
k=N

Wjm
k,s

)]
−
(
ŨAE [W ]N

)r∥∥∥∥∥≥ ε2
]

≤2n+1 exp
{
− NMrε2

11t2λ2
B(1 + maxk ω(k))2

}
.

(43)

In order to guarantee an approximation error ε/2 with
probability at least 1− δ, it is then sufficient to take

NMr = 11 t
2λ2
B

ε2

(
1 + max

k
ω(k)

)2
(n+ 1) log

(
2
δ

)
.

(44)
Using the new version of the concentration bound

Theorem 3, we can also provide an estimate for the
expected error of the composite channel.

Corollary 2 (Fluctuation bound for composite chan-
nels). Let H = A+ B be a n-qubit Hamiltonian with
decomposition as in Eq. (34), q(j) an arbitrary dis-
tribution, t the simulation time, N a fixed number of
qDrift samples, and M a fixed number of qDrift exper-
iments. Take UH(t)[ρ] = UH(t)ρU†H(t) (with UH(t) =
e−iHt), ŨA(t) a first order Trotter approximation of
the channel UA(t), EBq (t;N,M) the importance sam-
pled qDrift channel for the B term and Ωq(t;N,M, r)
the importance sampled composite channel. We then
have

E [‖ Ωq(t;N,M, r)− UH‖�] ≤

2 t
2

r

(
ΓA,Bcomm + λ2

B

N
(1 + Ep[ω])

)
+ α

ntλB
NMr

(
1 + max

k
ω(k)

)
+ α

√
n

NMr
tλB

(
1 + max

k
ω(k)

)
,

(45)

Accepted in Quantum 2023-04-05, click title to verify. Published under CC-BY 4.0. 7



where the parameter

ΓA,Bcomm =
∑
i<j

aiaj‖[Ai, Aj ]‖

+ 1
2
∑
ij

aibj‖[Ai, Bj ]‖ ,
(46)

contains the dependence on commutators.

If we now want to ensure the expected error to be
less then ε we can take a number of steps given by

r = 2κt
2

ε

(
ΓA,Bcomm + λ2

B

N
(1 + Ep[ω])

)
, (47)

for some κ > 1 together with N = NB from Eq. (40)
and a number of experiments given by

M = µq
n

ε

2α2κ

(κ− 1)2
λB√
CAtot

, (48)

where the dependence on q(j) is absorbed in

µq =
(1 + maxk ω(k))2√Eq [CB ] / (1 + Ep[ω])√

ΓA,BcommCAtot + λB
√

(1 + Ep[ω]) Eq [CB ]
.

(49)
A similar derivation to the one carried out here

could be used for more general cases, discussed al-
ready in [60], when one employs a higher-order Trot-
ter formula for the outer breakup in Eq. (35) or in the
simulation of the evolution under A as well as proto-
cols where the latter is implemented using qubitiza-
tion. Further improvements obtained by using ran-
domization [41, 42, 50] could also be accommodated.

Having unified the composite channel framework
from [60] with the previous result about importance
sampling described in this paper, we will now look
into more concrete applications.

4 Applications
4.1 Reduction of the simulation cost
The main idea of this paper is to obtain a computa-
tional advantage by choosing the probability distribu-
tion q(j) in order to reduce the total simulation cost.
For instance, we assign a weight Cj > 0 to each term
Hj , representing the number of resources required for
its simulation, and choose

qc(j) = hj
Cjλc

, λc =
∑
l

hl
Cl

. (50)

We will denote this sampling strategy with the sub-
script c, while remarking that the standard qDrift pro-
tocol is recovered when the cost is constant Cj = C.
This framework can be subsumed under the umbrella
of importance sampling where the goal is a reduction
in the integrated computational cost instead of the

variance. The choice of the cost Cj is then dictated
by the restrictions from the hardware, and is particu-
larly advantageous if the distribution of the cost has a
large variance. We first show that the expected cost of
one qDrift sample is always lower when sampling from
qc(j) with respect to p(j), using Jensen’s inequality.
The complete derivation of the following results can
be found in Appendix B.

Lemma 1 (Jensen’s inequality [63]). Let X be an
integrable random variable and ϕ(x) : R→ R a convex
function. We then have the following inequality:

ϕ(E[X]) ≤ E[ϕ(X)] (51)

Corollary 3. The expected cost of an importance
sampled qDrift channel with N = 1 samples and
q(j) = qc(j) is always lower than for the standard
qDrift protocol, i.e., we have

Eqc [C] ≤ Ep[C]. (52)

Even if, on average, one qDrift sample is cheaper
when sampling from this alternative distribution, this
alone might not be enough to claim a reduction in the
total simulation cost. This is because, due to Theo-
rem 1, the standard qDrift channel needs less samples
at fixed accuracy than an importance sampled one.
However, we can show that the cost reduction holds
in general, as formulated in the following theorem.

Theorem 4 (Cost reduction - pure qDrift). Let
Np(ε, t) and Nqc(ε, t) be the number of qDrift sam-
ples for the two distributions p(j) = hj/λ and qc(j) =
hj/(λcCj) for a given target precision ε and propaga-
tion time t. The expected cost of the important sam-
pled qDrift channel is then always smaller that the
cost of the standard one

Nqc(ε, t)Eqc [C] ≤ Np(ε, t)Ep[C]. (53)

The number of experiments is instead increased as

Mqc(ε) = Mp(ε)
(1 + Ep[1/C] maxj Cj)2

1 + Ep[1/C]Ep[C] , (54)

and independent on the total evolution time t.

We therefore see that, for any simulation using pure
qDrift, the importance sampling procedure described
in this work guarantees a saving in the cost at the
price of increasing the number of independent exper-
iments. A similar saving can also be shown to hold
when employing composite channels.

Theorem 5 (Cost reduction - composite channel).
Let Cp(ε, t) and Cqc(ε, t) be the expected cost to im-
plement the composite channels Ωp(t;N,M, r) and
Ωqc(t;N,M, r) using two distributions p(j) = hj/λ
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and qc(j) = hj/(λcCj) for a given target precision ε
and propagation time t. Then the following holds

Cqc(ε, t) ≤ Cp(ε, t) . (55)

The number of experiments is instead increased,
Mqc(ε) ≥ Mp(ε), but retaining the same scaling with
error ε and system size n and also independent on t.

We note that the specific definition of the cost is
specific to each application and hardware. For ex-
ample, on NISQ devices, the cost is dominated by
entangling two-qubit gates, and we might then take
their number to define the cost C. This choice auto-
matically considers the structure of the device, such
as its connectivity and the particular application. For
example, when simulating physical systems in second
quantization, the importance sampling scheme pro-
posed here will give a lower probability to terms with
large Jordan-Wigner strings [64]. On the other hand,
for applications involving error-corrected devices, one
would be tempted to choose the number of T gate in-
stead to define the cost C, as they typically take time
to be fabricated and are the main bottleneck in the
fault-tolerant regime [65]. The situation is, however,
less straightforward in this case since the decomposi-
tion in terms of T -gates can depend, in general, on
the choice of sampling probability q(j). For our cost
reduction scheme to work, we have made the common
assumption that the time evolution under the individ-
ual terms Hj can be fast-forwarded; a typical example
is when Hj are tensor products of Pauli operators. In
these cases, the T cost is directly associated with the
implementation of a single qubit z-rotation with an
angle determined by the time step τj and therefore on
q(j) itself (cf. Eq. (21)), making it difficult to obtain
a good candidate for the coefficients Cj . One possi-
bility would be to empirically optimize the sampling
distribution q(j), for example, using a Monte Carlo
approach or genetic optimization [66], in order to ob-
tain as many time steps τj as possible equal to integer
multiples of π/8 while preventing the average weight
Ep[ω(j)] to grow too much. There is, however, a dif-
ferent setup where the importance sampling strategy
from Eq. (50) could be employed directly to reduce
the overall T count. One can take a decomposition
where the terms Hj forming the Hamiltonian are still
fast]-forwardable but allow a decomposition in Clif-
ford+T gates whose complexity does not depend on
the time (see e.g. [67] for possible candidates). In this
case, sampling from qc(j) will also guarantee a cost
reduction.

4.2 Choice of the partitioning
Composite channels offer great versatility by combin-
ing deterministic and random product formulas, but
their performance greatly depends on the adopted
scheme to partition the Hamiltonian. By inspect-
ing the optimized expression of the expected cost in

Eq. (41), one can already see that a composite channel
might be helpful in situations where λB is very small
(as already noticed in [60]). For instance, even in the
particular case where the terms in B all commute with
each other, if λB is sufficiently small, the cost depends
directly only on the cost of implementing the terms in
A with the same pre-factor, we would have for a direct
first-order Trotter simulation. Thanks to our ability
to directly take into account the cost of individual
terms, we can also see that another use case is when-
ever Ep

[
CB
]
� CBtot which is possible in situations

where the cost of individual terms within B have a
significant variation. In addition, for these situations,
the distribution qc(j) from Eq. (50) guarantees a fur-
ther reduction of the expected cost at the expense of
an increase in the required number M of experiments
that need to be carried out.

These properties frequently arise in simulations of
Effective Field Theories, where higher-order correc-
tions to the interaction are suppressed. In this con-
text, a particularly convenient situation is when an ac-
cidental symmetry forces some low-energy constants
to take unnaturally small values. In nuclear physics,
for instance, typical examples of this phenomenon are
the SU(4) Wigner symmetry in systems composed by
neutrons and protons [68, 69] and its generalization
to SU(16) in the presence of hyperons [70]. For simu-
lations of low energy reactions with nuclei, one could
then consider the SU(4) symmetric potential in the
deterministic part (as worked out e.g., in [27]) and
add symmetry-breaking terms in a stochastic man-
ner using a qDrift channel. Another example would
be the inclusion of effective range effects, absent in
purely contact interactions, to improve the accuracy
in bulk neutron matter [71] or to provide the required
stability to medium mass nuclei [72, 73]. For situa-
tions where the physically relevant value of λB is not
sufficiently small to allow for considerable savings in
cost, it could also be possible to rely on extrapola-
tion techniques, e.g., eigenvector continuation [74], to
study the system at reduced values of λB followed by
an extrapolation.

More generally, one can also employ more direct op-
timizations of the splitting by attempting to minimize
the cost directly, possibly at the same time as the op-
timization of the weights in the importance sampling
distribution to be used for the stochastic portion of
the algorithm. To this end, schemes like the prob-
abilistic partitioning scheme introduced in Ref. [60]
could prove extremely valuable in enabling substantial
savings for any given Hamiltonian one is interested in.

5 Numerical Simulation
This section presents an application of importance
sampling and composite channels for the quantum
simulation of a model inspired by a pionless lattice
effective field theory [75], in particular, a simple toy
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model for a triton introduced in [27]. We take A = 2
dynamical nucleons together with a static one (infi-
nite mass) fixed on the first site of a 2×2 lattice with
periodic boundary conditions. We will consider the
static nucleon to be the proton while the two dynam-
ical ones will be neutrons in two different spin states
(Nf = 2). This model is simple enough to be eas-
ily simulated, yet contains much of the leading order
contributions to the interaction and can thus provide
valuable information about light nuclei and their re-
sponse functions [76]. The model is equivalent to a
two dimensional (d = 2) Hubbard model with a ki-
netic hopping term

Hkin = −T
Nf∑
f=1

∑
<i,j>

c†i,fcj,f , (56)

together with two and three body interactions

Hint =u
∑
i=1

Nf∑
f,f ′

ni,fni,f ′ + v
∑
i=1

∑
f<f ′<f ′′

ni,fni,f ′ni,f ′′

+ u

Nf∑
f=1

n1,f + v

Nf∑
f<f ′

n1,fn1,f ′ ,

(57)

with T the hopping coefficient, u the two-body inter-
action strength and v the three-body one. We recall
that the fermionic operator ci,f destroys a particle

of the species f on site i, c†i,f is the corresponding

creation operator and ni,f = c†i,fci,f the number op-
erator. The Hamiltonian becomes particularly simple
in first quantization because of the small size of the
lattice. By using two qubits to encode the position of
each nucleon using the following encoding strategy

|1〉 ≡ |00〉 |2〉 ≡ |01〉 |3〉 ≡ |10〉 |4〉 ≡ |11〉, (58)

this model can be expressed in the Pauli basis as

H = 8T + 3u
4 + v

16 − 2T
4∑
i=1

Xi

+ v

16

 ∑
i<j<k

ZiZjZk + Z1Z4 + Z2Z3


+
(u

4 + v

16

)
·

(∑
i

Zi + Z1Z2 + Z1Z3

+ Z2Z4 + Z3Z4 + Z1Z2Z3Z4

)
,

(59)

where Xk, Yk, Zk are the corresponding Pauli matri-
ces acting on qubit k. More details about the conver-
sion can be found in the original work [27].

Instead of using realistic coefficients from experi-
ments, we split the first quantized Hamiltonian into

two parts A and B, and define our Hamiltonian as

H(j) = a
∑
i∈IA

A
(j)
i + b

∑
i∈IB

B
(j)
i , (60)

where the subscript j denotes different splitting
strategies and IX a set of indices for X. We choose
uniform coefficients inside each term of the partition
in order to have a better control over the error bounds,
as well as two different Hamiltonian models. The first
is defined through the following separate contribu-
tions

A(0) =
4∑
k=1

Xk + Z1Z4 + Z2Z3

+
∑

1≤i<j<k≤4
ZiZjZk

(61)

B(0) =
4∑
k=1

Zk + Z1Z2 + Z1Z3

+ Z2Z4 + Z3Z4 + Z1Z2Z3Z4 .

(62)

The second one is instead given as

A(1) =
4∑
k=1

Xk + Z1 + Z1Z4

+ Z2Z3 + Z2Z4 + Z1Z2Z4

(63)

B(1) =
4∑
k=2

Zk + Z1Z2 + Z1Z3 + Z3Z4 + Z1Z2Z3

+ Z2Z3Z4 + Z1Z3Z4 + Z1Z2Z3Z4.

(64)

For simplicity, we will set a = 1 and express every-
thing, i.e., the coefficient b and simulation time t in
units of a.

The first Hamiltonian follows the perturbation the-
oretical approach, where A is the simpler model H in
the u = −4v configuration, where most of the coeffi-
cients are zero, and B describes a small perturbation
making the system more realistic. A deterministic
first order Trotter product formula is used to simu-
late the bulk of the system A, while a qDrift channel
handles the contribution from the perturbation B.

The second Hamiltonian is chosen instead in order
to minimize the expected cost of each circuit and ex-
emplifies the role of importance sampling. The A part
contains the terms that require small resources to be
simulated on the quantum devices, i.e., which have a
small cost C in terms of number of two-qubits CNOT
gates, while B is composed of the most difficult terms,
with some easy single-qubit rotations in order to di-
minish the expected cost.

We assume a constant cost of 0.1 for the one-qubit
operations and of one for every CNOT gate appear-
ing in the multi-qubit terms, after transpilation. We
will assume a linear connectivity 1423 and neglect any
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generator cost generator cost
Xk 0.1 Z1Z2 6
Zk 0.1 Z3Z4 6
Z1Z4 2 Z1Z2Z3Z4 6
Z2Z4 2 Z1Z3Z4 8
Z2Z3 2 Z1Z2Z3 8
Z1Z2Z4 4 Z1Z3 10
Z2Z3Z4 4

Table 1: Implementation cost for the different generators
appearing in the two considered Hamiltonians.

model 0 model 1∑
i∈IA Ci 28.4 10.5∑
i∈IB Ci 30.4 48.3

Eqc [ωB ] 15.43 15.02
Ep[CB ] 3.38 4.83
Eqc [CB ] 0.22 0.32

NpEp[CB ] · ε
t2λ2 6.76 9.66

NqcEqc [CB ] · ε
t2λ2 3.6 5.15

Table 2: Expectation value of the cost of simulating the
two terms in the partition A and B for the two different
models j = 0, j = 1, using either first order Trotterization
or (importance sampled) qDrift.

compilation optimization obtained through gate can-
cellation from neighboring operations for individual
sampled circuits. The cost of each generator is dis-
played in Table 1, while the expected cost for the two
different systems for Trotter, plain and importance
sampled composite channels, can be seen in Table 2.
More precisely, we compute the deterministic cost, the
expectation value of the cost per step, and the total
cost at fixed accuracy ε and time t. We can notice
that importance sampling is able to diminish the to-
tal simulation cost by a factor of two compared to the
plain qDrift and that the use of qDrift channel allows
a reduction of an order of magnitude in cost compared
to Trotterization.

We perform quantum simulation of both models
j = 0 and j = 1 on a noiseless simulator for two differ-
ent simulation times t = 0.05a and t = 0.1a and differ-
ent values of the strength coefficient b ∈ [0.005, 0.5],
using a composite channel Ωq(t; N = 1, M, r = 1).
Part A is evolved using one step of the first order
Trotter formula, while part B is evolved using a qDrift
channel with N = 1 step. We consider two different
sampling distributions: the standard one q = p and
q = qc with the cost defined as above. The diamond
norm, see Eq. (1), is displayed in Figure 1 against b/a,
where the top line shows the computations for the
model j = 0 and the bottom one for the model j = 1.

The diamond distance to the ideal simulation is dis-
played in dashed black for the full Trotterized chan-
nel, in red for the deterministic qDrift E(t; N = 1)
channel, in blue (yellow) dashed line for the standard
(q = p) composite channel with M = 1 (M = 10)
and in violet (green) dots for the importance sampled
(q = qc) composite channel with M = 1 (M = 10).
We perform statistics over R = 50 channels, but since
the standard deviations are of order 10−4, they are
not visible. We observe that the errors of the different
composite channels are close to each others and are
matching the full Trotter channel, except at b ≈ 0.05
where Trotterization is slightly better. This means
that the different channels have approximately the
same precision, and we can now look at cost needed
to implement them, see panels (c) and (f) on the last
column. We show the histograms of the cost over
R = 50 qDrift channels from the sampled circuits ob-
tained with a (importance sampled) composite qDrift
channel with M = 1 or M = 10 experiments, while
the error bars correspond to a 95% confidence interval
obtained over 50 different cost histograms. For sake
of readability, contiguos bars of different colors, which
are displayed with a small shift over the cost axis, have
the same cost written underneath. We observe addi-
tionally, that only a precise number of distinct bars
are occupied, which correspond to each possible cost
under the selected partition. Moreover, the dashed
and dotted lines correspond to the expectation value
of the standard and importance sampled qDrift chan-
nel, respectively, which is the same for M = 1 and
M = 10. This emphasizes that the cost of the impor-
tance sampled channel is close to the expected cost,
while the cost of the standard channel is more hetero-
geneous. However, the most important figure of merit
is the distribution of the cost. Hence, the importance
sampled qDrift is mainly composed of low-cost cir-
cuits, since the probability of sampling a cheap cir-
cuit is high, while the standard qDrift samples terms
independently of the cost, leading to a more homoge-
neous cost distribution. Most importantly, we obtain
a reduction in the required amount of resources of
a factor 1.8 (2) for the model j = 0 with the (im-
portance sampled) composite channel and 3.8 (5) for
model j = 1, without sacrificing precision, compared
to the full Trotterization. In fact, the cost for the
simulation of the B part alone is reduced of one (two)
order of magnitude with the pure (importance sam-
pled) qDrift channel compared to direct first order
Trotterization, see also Table 2.

6 Conclusions
This work generalizes past results on concentration
bounds of random product formulae [50], allowing
for the introduction of a generic importance sampling
scheme. We provide a rigorous characterization of the
protocol’s bias and statistical fluctuations, extending
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Figure 1: Diamond norm [(a), (b), (d), (e)] against the coefficient ratio b/a and histograms of the cost of the quantum circuits
[(c), (f)] in terms of CNOT gates for different composite channels (deterministic E(t) in red, standard Ω(t; N = 1, M, r = 1)
in dashed lines and importance sampled Ωq(t; N = 1, M, r = 1) with q = qc in dots) for the two different models H0 (upper
line) and H1 (bottom line), and simulation times (t = 0.05a for the first column and t = 0.1a for the second one). In panel
[(c),(f)], the dashed and dotted lines correspond to the expectation value of the standard and importance sampled qDrift
channel, respectively, which is the same for M = 1 and M = 10.

previous results on qDrift to quantify the algorithm’s
sample complexity. In particular, we showed that a
qDrift channel concentrates exponentially fast in NM
around its expectation value, where N is the number
of qDrift samples and M the number of experiments,
thus allowing an efficient allocation between quan-
tum resources (controlled by N) and classical ones
(controlled by M). These results allow for parallel
controllable simulations of a qDrift channel on multi-
ple quantum devices while keeping each circuit shal-
low enough to mitigate the noise and run time in the
NISQ and fault-tolerant era, respectively. Moreover,
by incorporating the individual implementation cost
for evolution under each of the Hamiltonian terms in
a suitable sampling distribution qc(j), we show that
importance sampling obtains a guaranteed total cost
reduction, in terms of hardware native cost such as
the number of CNOT gates, leading the way to a more
straightforward implementation of qDrift in the near
term. Under reasonable assumptions, similar cost sav-
ings can also be obtained when one wants to reduce
the number of T gates, which is beneficial for error-
corrected devices.

In addition, we extend our result to consider com-
posite channels [60], where the Hamiltonian is parti-
tioned into A and B, which are simulated separately
with a deterministic method (such as a Trotter-Suzuki
product formula) and a qDrift channel respectively.

We show that the same importance sampling distri-
bution qc(j) can also be employed in these cases to
reduce the quantum resources required for the imple-
mentation. In the typical situation where evolution
under different terms in the total Hamiltonian incurs
different implementation costs, the explicit inclusion
of this information in our construction opens the pos-
sibility to improve further the savings that can be
achieved by using composite channels by optimizing
the partitioning schemes [60]. In general, it could be
profitable to handle Hamiltonian terms, which are ex-
pensive but have small norms in a stochastic way us-
ing qDrift. We propose different concrete applications
within nuclear physics that may benefit from such an
approach from an Effective Field Theory perspective.

Finally, the theoretical results are illustrated
through numerical simulations of a simple model of a
triton on a (2×2) lattice in first quantization. We find
that a significant cost reduction (5×) can be obtained
using composite channels and importance sampling
without sacrificing accuracy. The approach is robust
for different strength values between the two parts of
the partition. Due to the quadratic scaling with sim-
ulation time of the qDrift part of the scheme, the pro-
tocol is particularly well suited for applications that
require relatively short evolution times, e.g., protocols
to measure observables by signal processing [77–79].

The example importance sampling strategy de-
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scribed in this work has the advantage of being sim-
ple and providing a guaranteed cost reduction, but
it might not be optimal for some specific problems.
We leave for future work exploration of more di-
rect numerical optimizations of the sampling distri-
bution and the partitioning scheme for constructing
composite channels. In addition, other variance re-
duction techniques such as Particle-Filters/Sequential
Monte Carlo (see e.g. [80, 81]) or de-randomization
(see e.g. [82]) could also possibly be used to improve
the efficiency of stochastic quantum algorithms like
the one described in this work.
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Äquivalenzverbot. Z. Physik, 47:631–651, 1928.
DOI: https://doi.org/10.1007/BF01331938.

[65] C. Chamberland and Noh K. Very low
overhead fault-tolerant magic state prepara-
tion using redundant ancilla encoding and flag
qubits. npj Quantum Inf, 6:91, 2020. DOI:
https://doi.org/10.1038/s41534-020-00319-5.

[66] Sourabh Katoch, Sumit Singh Chauhan, and
Vijay Kumar. A review on genetic algo-
rithm: past, present, and future. Multimed
Tools Appl, 80:8091–8126, 2021. DOI:
https://doi.org/10.1007/s11042-020-10139-6.

[67] Shouzhen Gu, Rolando D. Somma, and Bu-
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A Proofs of the main results
In this section, we present rigorous proofs of the theorems stated in the main results Section 3.2 and Section
3.3. Before being able to provide them, we fist need to state two lemmas from Ref. [50].

Lemma 2. Let U(ρ) = UρU† and V(ρ) = V ρV † be unitary channels, we then have

‖U − V‖� ≤ 2‖U − V ‖ . (65)

The results carries over to ensembles (pk, Vk) of unitary channels with weights pk ≥ 0 for which
∑
k pk = 1.∥∥∥∥∥U −∑

k

pkVk

∥∥∥∥∥
�

≤ 2

∥∥∥∥∥U −∑
k

pkVk

∥∥∥∥∥ . (66)

Lemma 3. Let X be hermitian. We then have the zero-th order bound ‖exp{iX} − 1‖ ≤ ‖X‖ and the first-order
bound ‖exp{iX} − iX − 1‖ ≤ 1

2‖X‖
2

We are now in a position to prove Theorem 1, that we will recall for the ease of the reader.

Theorem 1 (Bias error bound). Let U(t) be a first-order Trotter product channel, Eq(t;N) an average qDrift
channel with importance sampling and ω(j) = p(j)/q(j) the re-weighting factor. The diamond norm distance
between these two channels for N = 1 is then upper bounded by∥∥U (t)− Eq(t; 1)

∥∥
� ≤ t

2λ2 (1 + Ep [ω(j)]) , (67)

leading to the following result

∥∥U (t)− Eq(t;N)
∥∥
� ≤

t2λ2

N
(1 + Ep [ω(j)]) . (68)

Proof of Theorem 1. We first note that the Hamiltonian H can be written as the following expectation value

H =
∑
j

hjHj = λEp[Hj ] = λEq[ω(j)Hj ], (69)

with ω(j) = hj/(λq(j)) and therefore

U (t) = e−itH

= e−itλEp[Hj ]

= e−itλEq [ω(j)Hj ]

= e−iEq [Xj ],

(70)

with Xj(t) = thj
q(j)Hj . By noting that

Eq[Xj(t)] ≤
∑
j

q(j)Xj(t) = tH , (71)

we obtain the following bound
‖Eq[Xj(t)]‖ = t

∑
j

hj‖Hj‖ = λt , (72)

while
‖Xj(t)‖ =

(
thj
q(j)

)
‖Hj‖ = thj

q(j) . (73)

If we denote V (t) = exp{−iX(t)} and the corresponding channel as V(t)[ρ] = V (t)ρV (t)†, we can express the
deterministic qDrift channel with importance sampling as (cf. Eq. (9) in the main text)

Eq(t; 1)[ρ] =
∑
j

q(j)V (t)ρV (t)† = Eq[V(t)] . (74)
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We now observe that∥∥U (t)− Eq(t; 1)
∥∥
� = ‖U (t)− Eq[V(t)]‖� ≤2‖U (t)− Eq[V (t)]‖

=2
∥∥∥e−iEq [X(t)] − 1 + iEq[X(t)] + Eq

[
1− iX(t)− e−iX(t)

]∥∥∥
≤2
∥∥∥e−iEq [X(t)] − 1 + iEq[X(t)]

∥∥∥+ 2Eq
[∥∥∥e−iX(t) − 1 + iX(t)

∥∥∥]
≤‖Eq[X(t)]‖2 + Eq[‖X(t)‖2]

≤ (tλ)2 + Eq

[(
thj
q(j)

)2
]

= (tλ)2 (1 + Eq
[
ω2(j)

])
= (tλ)2 (1 + Ep [ω(j)]) ,

(75)

which was the first result what we set out to show. The result for the general average channel with N > 1
follows by first considering the fact that we can obtain Eq(t; 1) by N compositions

Eq(t;N) = Eq
(
t

N
; 1
)
◦ · · · ◦ Eq

(
t

N
; 1
)

= Eq
(
t

N
; 1
)◦N

= Eq

[
V
(
t

N

)]◦N
. (76)

Following [50] we then decompose the total evolution time t into N steps of duration t/N to find

∥∥U (t)− Eq(t;N)
∥∥
� =

∥∥∥∥∥U
(
t

N

)◦N
− Eq

(
t

N
; 1
)◦N∥∥∥∥∥

�

=

∥∥∥∥∥U
(
t

N

)◦N
− Eq

[
V
(
t

N

)]◦N∥∥∥∥∥
�

≤2

∥∥∥∥∥U
(
t

N

)N
− Eq

[
V

(
t

N

)]N∥∥∥∥∥
≤2N

∥∥∥∥U ( t

N

)
− Eq

[
V

(
t

N

)]∥∥∥∥
≤ t

2λ2

N
(1 + Ep[ω(j)]) ,

(77)

where we used Lemma 2 for the second line, the union bound for the third and Eq. (75) for the last step.

Now that we have generalized the bias error bound, we need to understand how a finite importance sampled
qDrift channel concentrates around its expected value. This will provide us with an estimate of M and N for a
given accuracy ε. We will use the martingale formalism and rely on Ref. [83] for a more in-depth consideration.

Definition 1 (martingale). Consider a filtration of the master sigma algebra F0 ⊂ F1 ⊂ · · · ⊂ F . A martingale
is a sequence {B0, B1, . . . } of random variable satisfying

1. σ(Bk) ⊂ Fk (causality)

2. E[Bk|Bk−1 . . . B0] = Bk−1 (status quo).

The intuition one may have is to think of k as a time index and Fk to contain all events determined by
the past up to time k. The causality requirement states that the present Bk may only depend on the past
(Bk−1, . . . , B0), and the status quo conditions formulate that, on average, today is the same as yesterday.

Before proving the theorem, we need to state another result from Ref. [50, Corollary 3.4].

Corollary 4. Let {Bk : k = 0, . . . , N} ⊂ Mdxd be a matrix martingale. Assume that the associated difference
Ck := Bk −Bk−1 obeys ‖Ck‖ ≤ R and its conditional variance

∥∥∥∑N
k=0 E[CkC†k|Ck−1 . . . C0]

∥∥∥ ≤ v almost surely.
Then ∀τ ≥ 0, we have

Pr [‖BN −B0‖ ≤ τ ] ≥ 2d exp
{
−τ2/2
v +Rτ/3

}
. (78)
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In order to show Theorem 2, we will generalize the construction from Ref. [50] of a suitable interpolating
martingale. Let’s start by introducing the unitaries Vj = e−iτjHj , for which Eq[Vj ] = Eq[V ] independently on
j, and consider the situation where we take a set of M separate samples of the N indices forming the product
formula resulting in M distinct martingales of the form

Bmk = Eq[V ]N−k
1∏
r=k

V mr , (79)

with m ∈ {1, 2, . . . ,M} and V mj the j-th unitary in the m-th sample. For technical reasons, we also define,

for every value of k, B0
k = 0 as well as Bmk = 0 for all m > M . The causality condition in Definition 1 is

automatically satisfied since ∀m Bmk is completely determined by the random samples V m1 , . . . , V mk obtained up
to the k-th step. The second condition can be checked explicitly, in fact

E
[
Bmk+1|Bmk , . . . , Bm0

]
= Eq[V ]N−k−1Eq[V mk+1]

1∏
r=k

V mr = Bmk . (80)

The generalized interpolating martingale needed for our construction can then be defined for j ∈ {0, 1, . . . , NM}
as follows

Dj =
M∑

m=bj/Nc+2

Bm0 +B
bj/Nc+1
j%N +

bj/Nc∑
m=1

BmN , (81)

where we denote with ba/bc the entire division from a by b and a%b the rest, i.e., the integer value a modulo
b. It is straightforward to see that the sum of two independent martingales is also a martingale, making Dj a
valid martingale. We have that the first element is given by

D0 =
M∑
m=1

Bm0 =
M∑
m=1

Eq [V ]N = MEq [V ]N , (82)

while the last element, corresponding to j = NM , is given instead by

DNM =
M∑
m=1

BmN =
M∑
m=1

1∏
r=N

V mr . (83)

For the special case M = 1 we recover the construction presented in Ref. [50]. The elements of the associated
difference sequence are given, for j ∈ {1, 2, . . . , NM}, by

Cj =Dj −Dj−1 = B
bj/Nc+1
j%N −Bbj/Nc+1

j%N−1

:=Bajbj −B
aj
bj−1

=Eq[V ]N−bj
1∏

r=bj

V ajr − Eq[V ]N−bj+1
1∏

r=bj−1
V ajr

=Eq[V ]N−bj
(
V
aj
bj
− Eq[V ]

) 1∏
r=bj−1

V ajr ,

(84)

where, for ease of notation, we have introduced aj = bj/Nc + 1 and bj = j%N in the second line. Since both
Vk and Eq[V ] are bounded (‖Vk‖ ≤ 1 almost surely and ‖Eq[V ]‖ ≤ 1) we can find the following bound

‖Cj‖ =
∥∥∥V ajbj − Eq[V ]

∥∥∥
≤
∥∥∥e−iτbjHbj − 1

∥∥∥+
∥∥1− Eq[e−iτkHk ]

∥∥
≤
∥∥∥e−iτbjHbj − 1

∥∥∥+ Eq
[∥∥1− e−iτkHk

∥∥] ,
(85)

where we used the triangle inequality in the second line and Jensen’s inequality in the last. Furthermore, since

‖τkHk‖ = thk
Nq(k) ≤

tλ

N
max
k

ω(k) , (86)
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almost surely, using Lemma 3, it also holds almost surely that

‖Cj‖ ≤‖τkHk‖+ Eq [‖τkHk‖]

≤ tλ
N

max
k

ω(k) + Eq[τk]

= tλ

N

(
1 + max

k
ω(k)

)
.

(87)

Finally, in order to control the variance, we use∥∥∥∥∥∥
NM∑
j=1

E[CjC†j |Cj−1 . . . C0]

∥∥∥∥∥∥ ≤ NM max
j
‖Cj‖2 = M

t2λ2

N

(
1 + max

k
ω(k)

)2
. (88)

We will now use this construction to show Theorem 2, which is reformulated below.

Theorem 2 (Concentration bound). Let Eq(t;N,M) be a finite importance sampled qDrift channel on n qubits
and Vjm

k
instances of the NM unitaries that compose the channel. such Their concentration around their

expectation value can be upper bounded ∀ε ∈ [0, 4tλ] as

Pr
[∥∥∥∥∥ 1
M

M∑
m

1∏
k=N

Vjm
k
− Eq [Vj ]N

∥∥∥∥∥ ≥ ε/2
]
≤ 2n+1 exp

{
− NMε2

11t2λ2(1 + maxk ω(k))2

}
. (89)

In order to guarantee an approximation error ε/2 with probability at least 1− δ, it is then sufficient to take

NM = 11 t
2λ2

ε2

(
1 + max

k
ω(k)

)2
(n+ 1) log

(
2
δ

)
. (90)

Proof of Theorem 2. Using the results in Eq. (87) and Eq. (88), we see that the parameters R and v from
Corollary 4 can be chosen as

R = tλ

N

(
1 + max

k
ω(k)

)
, v = MNR2 . (91)

Using Corollary 4, we can show that

Pr
[∥∥∥∥∥ 1
M

M∑
m

1∏
k=N

Vjm
k
− Eq [Vj ]N

∥∥∥∥∥ ≥ τ
]

=Pr
[∥∥∥∥∥ 1
M

M∑
m

1∏
k=N

Vjm
k
− Eq

[
1
M

M∑
m

1∏
k=N

Vjm
k

]∥∥∥∥∥ ≥ τ
]

=Pr
[
M∑
m=1

1∏
k=N

Vjm
k
− Eq

[
M∑
m=1

1∏
k=N

Vjm
k

]
≥Mτ

]
=Pr [‖DNM −D0‖ ≥Mτ ]

≤2n+1 exp
{
− M2τ2/2
v +MRτ/3

}
=2n+1 exp

{
− 3Mτ2

6NR2 + 2Rτ

}
.

(92)

As in Ref. [50], for τ ≤ NR we consider the simpler bound

Pr
[∥∥∥∥∥ 1
M

M∑
m

1∏
k=N

Vjm
k
− E [V ]N

∥∥∥∥∥ ≥ τ
]
≤2n+1 exp

{
−3Mτ2

8NR2

}
=2n+1 exp

{
− 3NMτ2

8(tλ (1 + maxk ω(k)))2

}
.

(93)

A looser sufficient condition τ ≤ 2λt can be obtained by noticing that maxk ω(k) ≥ 1, and the equality only
holds when all the weights are the same. Substituting τ = ε/2, using 32/3 ≤ 11 and Lemma 2, we obtain the
theorem statement.

Finally, these results can be used to compute the expected fluctuation bound, see Corollary 1.

Accepted in Quantum 2023-04-05, click title to verify. Published under CC-BY 4.0. 21



Corollary 1 (Fluctuation bound). Let H be a n-qubit Hamiltonian, q(j) an arbitrary distribution, t the simula-
tion time, N a fixed number of qDrift samples, and M a fixed number of qDrift experiment. Set UH [ρ] = UHρU

†
H

(with UH = e−iHt) and take the importance sampled qDrift channel Eq(t;N,M). We then have

Eq
[
‖Eq(t;N,M)− UH‖�

]
≤ 2 t

2λ2

N
(1 + Ep[ω]) + α

ntλ

NM

(
1 + max

k
ω(k)

)
+ α

√
n

NM
tλ

(
1 + max

k
ω(k)

)
. (94)

Proof. We prove the corollary by relating the diamond norm distance to the operator norm for ensembles of
unitary channels, see Lemma 2, and then using the triangle inequality

Eq
[
‖Eq(t;N,M)− UH‖�

]
≤ 2Eq

[∥∥∥∥∥ 1
M

M∑
m=1

1∏
k=N

Vjm
k
− UH

∥∥∥∥∥
]

≤ 2
∥∥UH − Eq[V ]N

∥∥+ 2Eq

[∥∥∥∥∥ 1
M

M∑
m=1

1∏
k=N

Vjm
k
− Eq[V ]N

∥∥∥∥∥
]
.

(95)

The first term can be bounded by using Theorem 1, while for the second we have

2Eq

[∥∥∥∥∥ 1
M

M∑
m=1

1∏
k=N

Vjm
k
− Eq[V ]N

∥∥∥∥∥
]

=2
∫ ∞

0
Pr
(∥∥∥∥∥ 1

M

M∑
m=1

1∏
k=N

Vjm
k
− Eq[V ]N

∥∥∥∥∥ ≥ τ
)
dτ

≤2
∫ ∞

0
min

(
1, 2 · 2ne−

3Mτ2
6NR2+2Rτ

)
dτ

≤α2 max
(√

n

NM
tλ(1 + max

j
ω(j)), ntλ(1 + maxj ω(j))

NM

)
≤α

(√
n

NM
tλ(1 + max

j
ω(j)) + ntλ(1 + maxj ω(j))

NM

)
(96)

As in Ref. [50], the integral is evaluated by cutting it into two parts. The first, with a contribution of nearly
one, when the denominator in the exponent is bigger than the numerator, i.e., τ ≤ max

(√
2n
MR, 2Rn

3M

)
, where

α suppresses any constant. The contribution for larger τ is marginal and of order O
(

max
(√

2
MR, 2R

3M

))
.

When employing composite channels, as introduced by Ref. [60], to simulate Hamiltonians formed by two
contributions H = A+B, we need to generalize the result from Theorem 2 from the channel Eq(t;N,M) to the
following one (cf. Eq. (42) in the main text)

Ωq(t;N,M, r) = 1
M

M∑
m=1

(
ŨA
(
t

r

)
◦ EBq

(
t

r
;N, 1

))
◦ · · · ◦

(
ŨA
(
t

r

)
◦ EBq

(
t

r
;N, 1

))
, (97)

with r outer compositions. Here EBq (t;N, 1) is an importance sampled qDrift channel for approximating the

evolution under the B term in the Hamiltonian with only one experiment (M = 1) and ŨA(t) is a unitary channel
that approximates UA(t)[ρ] = e−itAρeitA. In the main text we considered a first-order Trotter approximation

but the next theorem applies to more general cases, including ŨA being an arbitrary unitary matrix.

Theorem 3 (Concentration bound for composite channels). Let Ωq(t;N,M, r) be a composite channel on n

qubits for the Hamiltonian H = A+B employing an approximate unitary ŨA ≈ e−iAt/r for the time evolution
under the term A and total time t/r, a finite importance sampled qDrift channel Eq(t;N, 1) to approximate
evolution under B and r steps using unitaries Wj = e−iBjτj/r with τj = (tbj)/(Nqj). Its concentration around
its expectation value can be upper bounded ∀ε ∈ [0, 4tλB ] as

Pr
[∥∥∥∥∥ 1
M

[ 1∏
s=r

(
ŨA

1∏
k=N

Wjm
ks

)]
−
(
ŨAE [W ]N

)r∥∥∥∥∥ ≥ ε/2
]
≤ 2n+1 exp

{
− NMrε2

11t2λ2
B(1 + maxk ω(k))2

}
. (98)

In order to guarantee an approximation error ε/2 with probability at least 1− δ, it is then sufficient to take

NMr = 11 t
2λ2
B

ε2

(
1 + max

k
ω(k)

)2
(n+ 1) log

(
2
δ

)
. (99)
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Proof. The result can be shown by extending the martingales introduced for the proof of the concentration
bound Theorem 2. We start by noticing that Eq[Wj ] = Eq[W ] independent on j. For each of the M experiments
we consider r sets of N indices for the unitaries forming the product and denote by Wm

sj the j-th unitary on
the s-th block for the m-th experiment. We can then use them to generalize the martingale from Eq. (79) to

Bmk =
(
sk+1∏
s=r

ŨAEq[W ]N
)ŨAEq[W ]N−jk

1∏
j=jk

Wm
skj

 1∏
s=sk−1

ŨA

1∏
j=N

Wm
sj

 , (100)

for k = {0, 1, . . . , Nr}. Here we have defined the indices as sk = b(k − 1)/Nc + 1, j0 = 0 while for k > 0
jk = (k − 1)%N + 1. The different definition of j0 is required in order to accommodate the edge case k = 0.
We also require that B0

k = 0 as well as Bmk = 0 for m > M as was done before for the Bmk martingale. The
causality condition in Definition 1 is automatically satisfied since ∀m Bmk is completely determined by the
random samples Wm

11 , . . . ,W
m
skjk

obtained up to the k-th step. The second condition can be checked explicitly,
for b(k)/Nc = b(k − 1)/Nc, implying that sk+1 = sk and jk+1 = jk + 1, we have

E
[
Bmk+1|Bmk , . . . ,Bm0

]
=
(
sk+1∏
s=r

ŨAEq[W ]N
)ŨAEq[W ]N−jk+1Eq[Wskjk+1 ]

1∏
j=jk+1−1

Wm
skj

 1∏
s=sk−1

ŨA

1∏
j=N

Wm
sj


=
(
sk+1∏
s=r

ŨAEq[W ]N
)ŨAEq[W ]N−jk

1∏
j=jk

Wm
skj

 1∏
s=sk−1

ŨA

1∏
j=N

Wm
sj


=Bmk

(101)

while, for bk/Nc = b(k − 1)/Nc+ 1, i.e., k = nN for some integer n and therefore sk+1 = sk + 1 together with
jk = N and jk+1 = 1, we have the following

E
[
Bmk+1|Bmk , . . . ,Bm0

]
=
(
sk+1+1∏
s=r

ŨAEq[W ]N
)ŨAEq[W ]N−jk+1Eq[Wskjk+1 ]

1∏
j=jk+1−1

Wm
skj

 1∏
s=sk+1−1

ŨA

1∏
j=N

Wm
sj


=
(
sk+1+1∏
s=r

ŨAEq[W ]N
)(

ŨAE[W ]N
)ŨA 1∏

j=N
Wm

(sk+1−1)j

 1∏
s=sk+1−2

ŨA

1∏
j=N

Wm
sj


=
(
sk+1∏
s=r

ŨAEq[W ]N
)ŨAEq[W ]N−jk

1∏
j=jk

Wm
skj

 1∏
s=sk−1

ŨA

1∏
j=N

Wm
sj


=Bmk ,

(102)

by noting that N − jk = 0.
Finally, the new interpolating martingale for the different experiments takes the following form

Dj =
M∑

m=bj/Nc+2

Bm0 + Bbj/Nc+1
j%N +

bj/Nc∑
m=1

BmN , (103)

with the special case for j = 0 and j = NMr given, similarly to before, by

D0 =
M∑
m=1
Bm0 = M

( 1∏
s=r

ŨAEq[W ]N
)

DNMr =
M∑
m=1
BmNr =

M∑
m=1

 1∏
s=r

ŨA

1∏
j=N

Wm
sj

 . (104)

Since between consecutive indices the martingale Dj changes by only a single unitary, the difference sequence
Cj = Dj −Dj−1 have similar properties as Cj in Eq. (84) above. In particular

‖Cj‖ ≤
∥∥∥τkj
r
Bkj

∥∥∥+ Eq
[∥∥∥τk

r
Bk

∥∥∥] ≤ tλB
Nr

(
1 + max

k
ω(k)

)
, (105)
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using the same strategy employed to arrive at Eq. (87). For the variance instead∥∥∥∥∥∥
NMr∑
j=1

E[CjC†j |Cj−1 . . . C0]

∥∥∥∥∥∥ ≤ NMrmax
j
‖Cj‖2 = M

t2λ2
B

Nr

(
1 + max

k
ω(k)

)2
(106)

The result follows then by taking the parameters R and v from Corollary 4 as

R = tλB
Nr

(
1 + max

k
ω(k)

)
, v = MNrR2 , (107)

and using Corollary 4 as was done to show Theorem 2.

We are now in a position to show an upperbound for the expected error of a composite channel

Corollary 2 (Fluctuation bound for composite channels). Let H = A + B be a n-qubit Hamiltonian with
decomposition as in Eq. (34), q(j) an arbitrary distribution, t the simulation time, N a fixed number of qDrift
samples, and M a fixed number of qDrift experiments. Take UH(t)[ρ] = UH(t)ρU†H(t) (with UH(t) = e−iHt),
ŨA(t) a first order Trotter approximation of the channel UA(t), EBq (t;N,M) the importance sampled qDrift
channel for the B term and Ωq(t;N,M, r) the importance sampled composite channel. We then have

E [‖ Ωq(t;N,M, r)− UH‖�] ≤2 t
2

r

(
ΓA,Bcomm + λ2

B

N
(1 + Ep[ω])

)
+ α

ntλB
NMr

(
1 + max

k
ω(k)

)
+ α

√
n

NMr
tλB

(
1 + max

k
ω(k)

)
,

(108)

where the parameter

ΓA,Bcomm =
∑
i<j

aiaj‖[Ai, Aj ]‖+ 1
2
∑
ij

aibj‖[Ai, Bj ]‖ , (109)

contains the dependence on commutators.

Proof. We prove the corollary in the same way as we did Corollary 1 by relating the diamond norm distance to
the operator norm for ensembles of unitary channels, see Lemma 2, and then using the triangle inequality

E [‖ Ωq(t;N,M, r)− UH‖�] ≤ 2E

[∥∥∥∥∥ 1
M

M∑
m=1

1∏
s=r

1∏
k=N

ŨAWjm
ks
− UH

∥∥∥∥∥
]

≤ 2
∥∥∥UH − (ŨAEq[W ]N

)r∥∥∥+ 2Eq

[∥∥∥∥∥ 1
M

M∑
m=1

1∏
s=r

1∏
k=N

ŨAWjm
ks
−
(
ŨAEq[W ]N

)r∥∥∥∥∥
]
.

(110)

The first term can be bounded by using Theorem 1 and the error bounds for composite channel from Eq. (37)
to

2
∥∥∥UH − Eq[

(
ŨAEq[W ]N

)r∥∥∥ ≤ 2 t
2

r

(
ΓA,Bcomm + λ2

B

N
(1 + Ep[ω])

)
, (111)

while for the second we have

Eq

∥∥∥∥∥ 1
M

M∑
m=1

1∏
s=r

1∏
k=N

ŨAWjm
ks
−
(
ŨAEq[W ]N

)r∥∥∥∥∥
=2
∫ ∞

0
Pr
(∥∥∥∥∥ 1

M

M∑
m=1

1∏
s=r

1∏
k=N

ŨAWjm
ks
−
(
ŨAEq[W ]N

)r∥∥∥∥∥ ≥ τ
)
dτ

≤2
∫ ∞

0
min

(
1, 2n+1e

− 3Mτ2
6NrR2+2Rτ

)
dτ

≤α2 max
(√

n

NMr
tλB(1 + max

k
ω(k)), ntλB(1 + maxk ω(k))

NMr

)
≤α

(√
n

NMr
tλB(1 + max

k
ω(k)) + ntλB(1 + maxk ω(k))

NMr

)
,

(112)
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with R = tλB
Nr (1 + maxk ω(k)) from above. As in Ref. [50], the integral is evaluated by cutting it into two

parts. The first, with a contribution of nearly one, when the denominator in the exponent is bigger than the
numerator, i.e., τ ≤ max

(√
2n
MR, 2Rn

3M

)
, where α suppresses any constant. The contribution for larger τ is

marginal and of order O
(

max
(√

2
MR, 2R

3M

))
.

B Proofs for the cost reduction
In this section, we will recall and show the results for the particular distribution qc(j) = hj/Cj , where Cj is the
implementation cost of the corresponding term.

Corollary 3. The expected cost of an important sampled qDrift channel with N = 1 sample and q(j) = qc(j)
is always lower than for the standard qDrift

Eqc [C] ≤ Ep[C]. (113)

Proof of Corollary 3.

Eqc [C] =
L∑
j=1

q(j)Cj =
∑L
j=1

hj
Cj
Cj∑L

j=1
hj
Cj

=
∑L
j=1 hj∑L
j=1

hj
Cj

= 1
Ep[ 1

C ]
≤ Ep[C], (114)

where we used in the last step Jensen’s inequality with ϕ(C) = 1/C, which is convex for real positive numbers
C > 0.

This result shows that, on average, unitaries sampled from q(j) = qc(j) are cheaper to implement than from
q(j) = p(j). It remains to be shown if the total implementation cost at fixed accuracy is also reduced with this
choice of distribution.

Theorem 4 (Cost reduction - pure qDrift). Let Np and Nqc be the number of qDrift samples for the two
distributions p(j) = hj/λ and qc(j) = hj/(λcCj) for a given target precision ε. The expected cost of the
importance sampled qDrift channel is then always smaller than the standard one

NqcEqc [C] ≤ NpEp[C]. (115)

The number of experiments is instead increased as

Mqc(ε, t) = Mp(ε, t)
(1 + Ep[1/C] maxj Cj)2

1 + Ep[1/C]Ep[C] (116)

and, more particularly, independent on the total evolution time t.

Proof of Theorem 4. The factor between Np and Nqc , see Eq. (24), can be expanded as follows

Ep [ω(j)] =
∑
j

hj
λ
ω(j) =

∑
j

λc
hjCj
λ2

= Ep[C]λc
λ

= Ep[C]Ep[1/C].
(117)

Using this result, together with Corollary 3 and Theorem 1, we find that a sufficient choice for Nqc to guarantee
error ε over a total time t is at least

Nqc = t2λ2

ε
(1 + Ep[ω(j)]) , (118)

which translates into an average total cost of

Cqc = t2λ2

ε
(1 + Ep[ω(j)]) Eqc [C] = t2λ2

ε

1 + Ep[C]Ep[1/C]
Ep[1/C]

(119)

On the other hand, using regular qDrift we have

Cp = 2 t
2λ2

ε
Ep[C] . (120)
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In order to guarantee a cost reduction we then need
1 + Ep[C]Ep[1/C]

Ep[1/C] ≤ 2Ep[C] , (121)

or equivalently
Ep[C]Ep[1/C] ≥ 1 . (122)

This is always satisfied, as one can easily show using Jensen’s inequality. The result on the increase in the
number of experiments follows instead directly from the definition of the distribution qc(j) and the sufficient
condition Eq. (32) derived from Corollary 1.

We will finally show that the cost reduction is also retained when considering composite channels.

Theorem 5 (Cost reduction - composite channel). Let Cp(ε, t) and Cqc(ε, t) be the expected cost to implement the
composite channels Ωp(t;N,M, r) and Ωqc(t;N,M, r) using two distributions p(j) = hj/λ and qc(j) = hj/(λcCj)
for a given target precision ε and propagation time t. Then the following holds

Eqc [C(ε, t)] ≤ Ep[C(ε, t)]. (123)

The number of experiments is instead increased, Mqc(ε) ≥Mp(ε)
but retaining the same scaling with error ε and system size n and also independent on the total evolution time

t.
Proof. As from Eq. (41), we know that the cost of the composite channel can be written as

C(ε, t) = t2

ε

(√
ΓA,BcommCAtot + λB

√
Eqc [CB ] (1 + Ep[ω(j)])

)2
. (124)

Since the first term is independent from the choice of the sampling distribution, we only need to consider the
second one which also appears in Theorem 4 and can therefore be bounded as

Eqc
[
CB
]

(1 + Ep[ω(j)]) ≤ 2Ep
[
CB
]
. (125)

For the number of experiments instead, using Eq. (48) and Eq. (49), for the p(j) distribution we have

Mp(ε) = n

ε

2α2κ

(κ− 1)2
λB√
CAtot

23/2
√

Ep [CB ]√
ΓA,BcommCAtot + λB

√
2Ep [CB ]

, (126)

while for the importance sampled distribution qc(j) we find

Mqc(ε) = n

ε

2α2κ

(κ− 1)2
λB√
CAtot

(
1 + Ep[1/CB ] maxj CBj

)2√ 1
(1+Ep[1/CB ]Ep[CB ])Ep[1/CB ]√

ΓA,BcommCAtot + λB
√

(1 + Ep[1/CB ]Ep[CB ]) /Ep[1/CB ]

≥ n

ε

2α2κ

(κ− 1)2
λB√
CAtot

(
1 + Ep[1/CB ] maxj CBj

)2√ 1
(1+Ep[1/CB ]Ep[CB ])Ep[1/CB ]√

ΓA,BcommCAtot + λB
√

2Ep[CB ]

≥ n

ε

2α2κ

(κ− 1)2
λB√
CAtot

2
√

1 + Ep[1/CB ] maxj CBj
√

Ep[CB ]√
ΓA,BcommCAtot + λB

√
2Ep[CB ]

≥ n

ε

2α2κ

(κ− 1)2
λB√
CAtot

23/2
√

Ep [CB ]√
ΓA,BcommCAtot + λB

√
2Ep [CB ]

= Mp(ε),

(127)

where the second line is obtained by remarking that, due to Jensen’s inequality,

1 + Ep[CB ]Ep[1/CB ]
Ep[1/CB ] ≤ 2Ep[CB ] . (128)

In order to get to the third line we used the inequality(
1 + Ep[1/CB ] maxj CBj

)3
1 + Ep[1/CB ]Ep[CB ] ≥ 4Ep[1/CB ]Ep[CB ] , (129)

and the last inequality follows from 1 + Ep[1/CB ] maxj CBj ≥ 2.
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