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Free energy-based reinforcement learn-
ing (FERL) with clamped quantum Boltz-
mann machines (QBM) was shown to sig-
nificantly improve the learning efficiency
compared to classical Q-learning with the
restriction, however, to discrete state-
action space environments. In this pa-
per, the FERL approach is extended to
multi-dimensional continuous state-action
space environments to open the doors for
a broader range of real-world applications.
First, free energy-based Q-learning is stud-
ied for discrete action spaces, but con-
tinuous state spaces and the impact of
experience replay on sample efficiency is
assessed. In a second step, a hybrid
actor-critic scheme for continuous state-
action spaces is developed based on the
Deep Deterministic Policy Gradient algo-
rithm combining a classical actor network
with a QBM-based critic. The results
obtained with quantum annealing, both
simulated and with D-Wave quantum an-
nealing hardware, are discussed, and the
performance is compared to classical rein-
forcement learning methods. The environ-
ments used throughout represent existing
particle accelerator beam lines at the Eu-
ropean Organisation for Nuclear Research
(CERN). Among others, the hybrid actor-
critic agent is evaluated on the actual elec-
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tron beam line of the Advanced Plasma
Wakefield Experiment (AWAKE).

1 Introduction

The European Organisation for Nuclear Research
(CERN) maintains a dense and diverse physics
programme with numerous experiments requiring
a broad spectrum of particle beam types to be
produced and provided by the accelerator com-
plex [1, 2, 3, 4]. Combined with the requests for
higher beam intensities and smaller beam sizes
at an overall improved beam quality, this makes
accelerator operation more and more challeng-
ing. The way forward is to exploit automation
and improved modelling to boost machine flexi-
bility, availability, and beam reproducibility. Ide-
ally, as-built reversible physics models are avail-
able in the control rooms to adjust beam param-
eters. Whereas for many beam control problems,
physics models are indeed used at the CERN ac-
celerators, various systems are still tuned manu-
ally due to the lack of models or beam instrumen-
tation. Recently, sample-efficient control algo-
rithms, such as reinforcement learning (RL), have
been introduced for some of these cases. Sample
efficiency is essential for any optimisation algo-
rithm in the context of accelerator operation to
minimise the impact on beam time available for
the physics experiments.

Q-learning is a popular RL algorithm [5], where
the RL agent iteratively learns a so-called Q-
function to define the optimal policy. While in
classical deep Q-learning the Q-function is esti-
mated using a deep neural network [6], the free
energy-based reinforcement learning (FERL) ap-
proach utilises the free energy of a coupled spin
system as a Q-function approximator. The spin
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system is typically represented by a quantum
Boltzmann machine (QBM), and its free energy
is determined, for example, through quantum an-
nealing [7]. An improvement in the learning ef-
ficiency of an FERL agent compared to classical
Q-learning algorithms has already been demon-
strated in earlier research; however, with the re-
striction to discrete state-action space environ-
ments [8, 9].

The goals of this study are twofold. First,
to remove the limitation to discrete state-action
space environments and to extend FERL to
multi-dimensional continuous state-action spaces,
opening doors for a broader range of real-world
applications. This is particularly important for
particle accelerator systems where the control pa-
rameters and observables are usually defined by
continuous variables. The second objective is to
compare the performance of the classical RL algo-
rithms to their quantum or hybrid counterparts
in terms of both sample efficiency and the number
of parameters required to model the Q-function.
The objectives are achieved in a two-stage ap-
proach. FERL is first extended to continuous
state-space but still discrete action-space envi-
ronments, and the impact of experience replay on
the sample efficiency is studied. This is done for a
one-dimensional beam steering environment of an
existing beam line at CERN. In a second stage, a
hybrid actor-critic scheme based on the classical
Deep Deterministic Policy Gradient (DDPG) RL
algorithm [10] is developed by combining a clas-
sical actor network with a QBM-based critic to
allow for continuous state-action space environ-
ments. The hybrid scheme is validated and com-
pared to its classical counterpart by applying it
to a ten-dimensional environment of the electron
beam line at the CERN AWAKE facility both in
simulations and in the real world [2].

The rest of the paper is organised as follows.
First, the main concepts of the RL and FERL do-
mains are introduced in Section 2, including an
overview of existing related research. The con-
tributions are discussed in Section 3, comprising
the development of the new hybrid actor-critic
algorithm and experimental results for trajectory
control at the two CERN beam lines with dif-
ferent complexities. This includes comparisons
to the performance of the corresponding classi-
cal RL algorithms both using simulated quantum
annealing and D-Wave quantum annealing hard-

Figure 1: Reinforcement learning paradigm: the interac-
tion between agent and environment occurs in discrete
time steps. At every time step t, the agent observes
the environment in its current state st ∈ S and takes
an action at ∈ A following policy π. The environment
transitions from state st to st+1, according to the state
transition probability and emits a reward rt+1 [5].

ware, and an evaluation of a trained hybrid actor-
critic agent on the real-world AWAKE electron
beam line. Finally, some conclusions are raised,
and some ideas for further study are proposed.

2 Background
2.1 Reinforcement learning
Reinforcement learning algorithms solve sequen-
tial decision-making problems by deciding which
action a ∈ A to take given a specific state s ∈
S [5]. The problem can formally be described
by using a discrete-time Markov Decision Pro-
cess (MDP) consisting of state space S, action
space A, state transition probabilities Pa(s, s′),
and immediate transition rewards Ra(s, s′) emit-
ted when moving from state s to s′ under action
a. The decision-making strategy is formally de-
scribed through a policy function π : S × A →
[0, 1], which is a probability distribution that can
be used to map each state to a chosen action. The
optimal policy is learned through interaction with
the environment to maximise the cumulative re-
ward along the path of the visited states. The
entire RL process is illustrated in Fig. 1.

The RL algorithms discussed in this paper be-
long to the class of model-free RL algorithms,
where the dynamics model of the environment un-
der consideration is not explicitly learned or avail-
able. Within model-free algorithms, the class of
policy optimisation methods learns the policy di-
rectly through policy gradient and is suitable for
continuous action spaces. On the other hand,
Q-learning methods seek to learn the so-called
action-value or Q-function. The Q-function is a
measure of the expected sum of discounted fu-
ture rewards, assuming the agent in state s takes
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Figure 2: RL actor-critic scheme: the policy- or actor-network proposes action a given a state s, while the critic
network estimates the Q-value of the proposed state-action pair. The actor network is trained through the policy
gradient rule.

action a and then continues until the end of the
episode following policy π. It is defined as

Q(s, a|θ) = Eπ

[
N∑
k=1

γk−1rt+k|st = s, at = a

]
,

(1)

where N is the number of states visited, starting
from state s = st at time step t and stopping at
a terminal state at the end of the episode at time
step t + N , γ ∈ [0, 1] is a discount factor, and ri
is the reward the agent receives during iteration
i. The Q-function is parameterised by θ, which
denotes, for example, the network weights in case
the Q-function is approximated by an artificial
neural network.

The Q-function can be learned iteratively by
using the training samples collected during agent-
environment interactions and by employing the
temporal-difference rule [5]

Q(st, at)← Q(st, at) + α[rt+1

+ γmaxa′ Q(st+1, a
′)−Q(st, at)], (2)

at time step t, where α is the learning rate. Once
trained, i.e. during exploitation, a Q-learning
agent always takes the action that maximises the
Q-function (‘greedy policy’).

One of the advantages of Q-learning in compar-
ison to policy gradient methods is its sample effi-
ciency due to experience replay [11]. All the state
transitions, the chosen actions, and obtained re-
wards are stored in a replay buffer. During agent
training, the Q-function updates are calculated
based on mini-batches sampled from this buffer.

The Q-learning method is specifically suitable
for discrete action spaces. Actor-critic algorithms
combine Q-learning with policy optimisation and

hence offer a relatively sample-efficient method
for continuous action spaces [5].

2.2 Deep Q-learning
The Q-function is typically approximated by a
(deep) neural network for most real-world ap-
plications where the state-action space is large.
Deep Q-learning or DQN is one of the most pop-
ular Q-learning algorithms [6]. DQN expects the
state vector as input and provides the Q-values
for all possible discrete actions at the output
layer. Sorting allows determining the action that
maximises the Q-function efficiently.

2.3 Actor-critic algorithms
One major limitation of Q-learning is its restric-
tion to discrete action-space environments. This
is because the action for a given state is obtained
with a′ = arg maxaQ(s, a) at inference and the
update rule for agent training also needs to find
the maximum over Q(s, a′) for all possible actions
a′ (see Eq. 2).

The actor-critic scheme removes this limita-
tion. The most basic algorithm is Deep Deter-
ministic Policy Gradient (DDPG) [10] with its
architecture illustrated in Fig. 2. It consists of a
“critic” network parameterised by weights θ to ap-
proximate the Q-function and an “actor” network
parameterised by weights χ to learn the policy.
According to this scheme, the actor proposes a
(continuous) action given the current state, and
the critic provides feedback on how good that
state-action pair is by calculating its Q-value.
DDPG interleaves Q-learning and policy updates.
The update rule for the critic network is identical
to Eq. 2 except that the term maxa′ Q(st+1, a

′)
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is now replaced by Q(st+1, π(st+1)). Following
the chain rule, the policy gradient updates can
be calculated as

∇χπ = Eπ [∇χQ(s, π(s|χ)|θ)]
= Eπ [∇aQ(s, a|θ) · ∇χπ(s|χ)] . (3)

2.4 Energy-based reinforcement learning

One can employ energy-based models to approx-
imate and learn the Q-value function as an al-
ternative to using a standard feed-forward neu-
ral network. In an energy-based model, the Q-
function is defined through the energy function of
a statistical system. Every configuration of that
system has a specific energy associated with it
that can be used as a Q-value estimate. By tun-
ing the system’s parameters, an energy function
is adjusted iteratively to best approximate the Q-
function of the RL task under consideration. A
particularly well-suited example of a statistical
system for FERL is the Boltzmann machine, an
energy-based model represented by a probabilis-
tic network of binary variables [12].

2.4.1 Clamped quantum Boltzmann machine

A Boltzmann machine (BM) consists of visible
and hidden (latent) variables. They are denoted
by vi, with i ∈ V , and by hj , with j ∈ H, respec-
tively. Visible variables typically serve as the in-
puts and outputs, and hidden variables are added
to increase the expressivity of the model.

For the FERL algorithms discussed in this pa-
per, the BM’s topology is chosen to be clamped,
building upon the research in [8]. This means
that the visible variables are not part of the net-
work. Instead, they enter the system’s energy
function as biases or self-couplings to the spe-
cific hidden variables assigned to them. These
bias terms are used in a weighted sum, where the
weights are given by the coupling strengths be-
tween visible and hidden variables. Bias terms
are linear in the state of the hidden variable
with which they are associated. On the other
hand, couplings between hidden variables, such
as wjk ∈ R, j, k ∈ H, correspond to quadratic
contributors to the energy function.

For RL, the visible variables are composed of
the vectors of the state-action pair v = (s, a) ∈
RdS+dA , where dS and dA are the dimensional-
ities of the state and action space, respectively.

Figure 3: Clamped BM with topology typically used for
FERL applications. Visible nodes are given by the state-
action pair (green box). Hidden nodes are shown in
grey. Visible-hidden and hidden-hidden couplings are il-
lustrated by dashed and solid lines, respectively.

Figure 3 illustrates a clamped BM typically em-
ployed for FERL.

A quantum BM (QBM) can be represented by
a physical system of coupled qubits in the pres-
ence of a purely transverse magnetic field, here
pointing along the x-axis. Each node of the BM
can assume a spin “up” or “down” state following
a certain probability distribution. The system’s
energy states are described by the Hamiltonian
of the transverse-field Ising model [13]

H(v) =−
∑
i∈V,
j∈H

wijviσ
z
hj
−

∑
j,k∈H

wjkσ
z
hj
σzhk

− Γ
∑
j∈H

σxhj
, (4)

where σxhj
and σzhj

are the Pauli spin matrices
acting on the hidden node hj for the x- and z-
directions, respectively, and Γ denotes the trans-
verse magnetic field strength. The transverse
field introduces quantum fluctuations which en-
able, among others, quantum tunnelling [14].

When measuring the spin states along the z-
coordinate, one loses information about the spin
x components. This can be overcome by replica
stacking, a method developed in [8] to expand the
transverse-field Ising model based on the Suzuki-
Trotter expansion. By applying this technique,
the non-zero transverse-field Ising model can be
represented by a classical Ising model of one
dimension higher with an effective Hamiltonian
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given by

Heff(v) =

− 1
Nr

Nr∑
l=1

 ∑
j,k∈H

wjkhj,lhk,l +
∑
i∈V,
j∈H

wijvihj,l


− w+

∑
j∈H

Nr∑
l=1

hj,lhj,l+1 +
∑
j∈H

hj,1hj,Nr

 ,

(5)

with w+ = 1
2β log

[
coth Γβ

Nr

]
, where Nr is the

number of replicas, β the inverse temperature,
and hj,l denotes the hidden node with index j in
replica l.

For FERL, the negative free energy F (v) of
the clamped QBM is used to approximate the Q-
function

Q(v) ≈ −F (v)

= −〈Heff(v)〉 − 1
β

∑
c

P(c|v) logP(c|v),

(6)

where c ranges over the spin configurations and
P(c|v) denotes the probability of observing spin
configuration c given visible nodes v.

The temporal difference update rules for the
QBM weights follow from the Bellman equations

wij ← wij + α∆Qvi 〈hj〉,
wjk ← wjk + α∆Q 〈hjhk〉, (7)

with ∆Q = [rt+1+γQ(st+1, at+1)−Q(st, at)], and
i ∈ V , j, k ∈ H, and where 〈hj〉 and 〈hjhk〉 are
the expectation values of the hidden nodes and of
the products of hidden nodes, respectively. Based
on Eq. 7, the weights of the QBM can be learned
iteratively in analogy to classical Q-learning.

2.4.2 Quantum annealing

Quantum adiabatic computing [15] is a model
of quantum computation in which the adiabatic
theorem [16] is exploited to obtain the ground
state of a given Hamiltonian Hf . Initially, the
ground state of a simple Hamiltonian Hi is pre-
pared. Then, the system is evolved according to
the time-dependent Hamiltonian

H(t) = A(t)Hi +B(t)Hf ,

where A(t), B(t) : [0, T ] → R are such that
A(0) = B(T ) = 1 and A(T ) = B(0) = 0. Pro-
vided that the evolution is slow enough, the adi-
abatic theorem ensures that, starting from the
ground state of H(0) = Hi, the system will end
up in the ground state of H(T ) = Hf .

In practice, however, the time T can be ex-
tremely large (and, in some cases, very expen-
sive or even impossible to compute [17]). For
this reason, it is common to apply a heuristic
implementation of quantum adiabatic computing
that goes by the name of quantum annealing [18].
In quantum annealing, Hf is taken from a re-
stricted family of Hamiltonians, usually those of
the transverse-field Ising model, and T is fixed to
some constant time, even if it does not guarantee
adiabaticity.

Quantum annealing is implemented by the
Canadian company D-Wave in a series of quan-
tum devices, some of which can be accessed on-
line through a cloud-based service [19]. One
of their most popular uses is the approximation
of solutions to combinatorial optimisation prob-
lems. This is achieved by mapping the objective
function to a Hamiltonian whose ground states
are minimum-cost solutions to the original prob-
lem (see [18] for details). In this work, follow-
ing [8], quantum annealing will be used to esti-
mate the free energy of quantum Boltzmann ma-
chines which serve as Q-function approximators,
as explained in the previous subsection.

2.5 Related work

Quantum machine learning (QML) [20] is a dis-
cipline aiming to establish a productive interplay
between the parallel revolutions of quantum com-
puting and artificial intelligence. Among various
machine learning tasks and methods widely de-
scribed in the literature, the quantum comput-
ing connection to the field of RL is still in a pre-
liminary state, whereas actor-critic methods are
among the state-of-the-art in current classical RL
literature. With no ambition for completeness,
but with a cross-sectional view of the literature,
in this section, previous works in the field that
made steps towards connecting quantum comput-
ing and RL are summarised.

Quantum enhancements for RL can be found
mainly in sample complexity and the accelera-
tion of the algorithmic part of the learning agent.
However, the importance of probing speed-up has
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only been studied for special models [9, 21] and
by building on quantum annealing systems like
those developed by D-Wave [22].

Additional consideration should be made con-
cerning the technology adopted: different ap-
proaches are linked to different quantum for-
mulations of the assigned problem, either quan-
tum annealing or gate-based quantum compu-
tation. Some proposed algorithms can show a
proved speed-up only in the fault-tolerant quan-
tum regime. Current near-term quantum de-
vices cannot handle complex quantum routines,
so alternatives like the combination of deep BMs
and quantum BMs or parameterised quantum cir-
cuits (PQC) for variational quantum algorithms
(VQA) are being investigated for heuristic quan-
tum speed-ups. Considering the commonly ac-
cepted division of RL algorithms into policy-
based and value-based methods, a short summary
of PQC implementation is provided in the follow-
ing.

A first step in assessing PQCs in policy-based
RL algorithms has been made in [23], where the
authors focus on the role of data-encoding and
readout strategies. Regarding the value-based
approach, there are fundamental questions about
the applicability of VQAs, particularly for Q-
learning algorithms, where the role of the deep
Q-network is to serve as a function approxima-
tor of the Q-function. Again, in [23] for the Q-
learning approach with policy gradient-based RL,
the authors identify families of environments that
are proven to be hard for any classical learner but
can be solved in polynomial time by a quantum
learner in a policy learning setting.

In [24], a two discrete-state environments solu-
tion with PQC is studied, where a layer of addi-
tive weights follows the quantum model’s output.
Instead, in [25], the authors propose a continuous
and discrete state spaces implementation where
angle encoding is used for the continuous part
with one initial layer of rotation gates. Neverthe-
less, none of the continuous state-space environ-
ments run for the Cart Pole benchmark achieve a
satisfactory convergence according to its original
specification.

Another important reference that provides an
extended discussion about the state of the art
for QRL is [26]. From the theoretical point of
view, the authors explore the possibility of ap-
proximating functions and the complexity of sam-

pling from different models. This led to quantum
generalisations of classical energy-based models.
They are quantum enhancements for a class of
deep RL which can have further advantages over
conventional methods by their capacity to cap-
ture more complex action-state distributions. Be-
yond general considerations, also for this case, the
authors consider mainly one (simple) classical RL
architecture, i.e., deep Q-learning, which achieves
better learning performances than conventional
methods when the state and action spaces are
large.

As far as annealing is concerned, concerning en-
hancements of the algorithmic part of the learn-
ing agent, speed-ups have been explored by build-
ing on the system of D-Wave computers. In [8]
the authors implemented free energy-based rein-
forcement learning on the D-Wave 2000Q ma-
chine, where they proved that replica stacking is
a successful method for estimating effective clas-
sical configurations obtained from a quantum an-
nealer, with significant improvement over FERL
using classical Boltzmann machines. In [27], pol-
icy evaluation for discrete state spaces is em-
bedded in the D-Wave QPU (Quantum Process-
ing Unit). The authors also look into dealing
with continuous state space in the context of self-
driving vehicles. However, despite the interesting
proposal, the work does not guarantee speed-up.

To the best of our knowledge, regardless of the
computing paradigm considered, no previous pro-
posal of a hybrid (i.e. quantum-classical) actor-
critic scheme is present in the literature.

3 Contribution
3.1 Objectives and study cases
The main contribution of this paper is to de-
velop and study a hybrid actor-critic (A-C)
scheme, combining a classical policy network with
a quantum-based Q-network represented by a
QBM. Given the improved sample efficiency ob-
served empirically for FERL Q-learning on dis-
crete state-action tasks [8, 9], the aim is to study
whether an improvement in the training efficiency
can also be observed for a hybrid A-C algorithm.
The work was initially motivated by the existing
control problems at the CERN accelerator com-
plex, which would greatly benefit from sample-
efficient RL algorithms and whose control vari-
ables and observations are usually defined over
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continuous spaces.
The environments under study are two existing

CERN beam lines representing control problems
of different degrees of complexity. The first de-
scribes a target steering task for a proton beam
with a single control variable. In contrast, the
second one represents the AWAKE electron beam
line featuring ten control parameters. For both
tasks, accurate simulations exist, which will be
used mostly to train and study the different al-
gorithms. The environments are built on top of
the OpenAI gym [28] template to facilitate the
use of existing classical RL algorithm implemen-
tations, such as Stable-Baselines3 [29].

In the following, two studies are presented.
Study A considers an FERL Q-learning agent to
solve a one-dimensional target steering problem.
The impact of experience replay on the sample
efficiency is assessed and compared to classical
deep Q-learning. The action space is discretised,
but the state space is continuous. In Study B,
the performance of the hybrid A-C is evaluated
for the ten-dimensional electron beam line and is
compared to the classical DDPG algorithm using
a continuous state-action space.

All the studies are first performed using
the simulated quantum annealing (SQA) library
Sqaod [30]. Eventually, however, the FERL Q-
learning and hybrid A-C agents are also adapted
to and trained on D-Wave Advantage quantum
annealing hardware (QA) [22]. Furthermore, for
the AWAKE beam line environment, evaluations
of the RL agents can also be performed in the
real world, as equipment safety is less of a con-
cern given the type and parameters of the particle
beam. Hence, the agents trained in the simu-
lated environment are also deployed on the real
AWAKE beam line (sim-to-real transfer).

3.2 Hyperparameter selection

To guarantee a fair comparison between the clas-
sical RL and quantum FERL approaches, exten-
sive hyperparameter searches were performed to
ensure that the agents always train with the best
sample efficiency possible. The search was re-
alised by means of the Ray Tune [31] and Op-
tuna [32] libraries. 500 hyperparameter sets
were explored for every case. For every param-
eter set, the RL agents were trained 15 times
from scratch, and their performance was evalu-
ated based on 500 randomly initialised episodes.

The following hyperparameters were included in
the search:

• Exploration parameters: initial ε-greedy
and the fraction of training period with ε-
greedy policy, maximum allowed iterations
per episode;

• Learning parameters: initial learning rate,
batch size, reward discount factor, target-net
soft update factor;

• Annealing parameters: inverse annealing
temperature, final transverse field.

The annealing time was fixed at 100 steps
(SQA), and the number of Trotter slices was set
to 5. The same procedure was employed for all
the studies discussed in the following.

3.3 Study A: FERL Q-learning with continuous
state space
This section discusses the performance of the
classical and FERL agents on a one-dimensional
proton beam target steering environment. The
FERL method described in [8], where the authors
work with discrete binary state-action space envi-
ronments, is extended to continuous state space.
This is possible in a clamped QBM where the vis-
ible state input nodes only enter as bias terms.

The sample efficiencies of FERL and classical
Q-learning agents and the impact of experience
replay on the latter are assessed. Furthermore,
the sample efficiency is also measured depending
on the complexity of the Q-network. Initially,
this task was also formulated as a discrete, binary
state-action space environment, reproducing the
method employed in [8]. For completeness, those
results are included in Appendix A.

3.3.1 Environment and RL task

The one-dimensional beam target steering en-
vironment is based on the beam optics of the
TT24-T4 transfer line at CERN [33]. This line
is about 170m long and transports protons with
a momentum of 400GeV/c from the Super Pro-
ton Synchrotron (SPS) to some of the fixed-target
physics experiments installed in the CERN North
Area. TT24 is equipped with several dipole and
quadrupole magnets to steer and focus the beam,
various beam position monitors (BPM), and the
actual target, which is placed at the end of the
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Figure 4: One-dimensional beam target steering task at the CERN TT24-T4 beam line. Left: Horizontal beam
trajectories obtained from tracking simulations are shown for three different settings of the main deflecting dipole
(orange). Right: Zoomed view on the target (grey, hatched) region showing the horizontal position of impact of the
beam for the three settings of the main dipole.

line. The objective of the task is to optimise the
number of particles hitting the target by tuning
the first dipole magnet in the line to maximise
the event rates in the particle detectors.

The left-hand side of Fig. 4 shows the relevant
elements of TT24 together with horizontal beam
trajectories obtained from tracking simulations
for three different settings of the main bending
dipole (orange). Depending on the dipole de-
flection angle, the particles hit the target (grey,
hatched) at different horizontal positions, as illus-
trated by the zoomed view on the right-hand side
of the figure. There are focusing (purple) and de-
focusing (olive) quadrupoles along the beam line
to keep the beam particles confined.

The RL task is formalised as follows. The
state s is defined by the beam position reading
of one of the BPMs installed in the beam line
(cyan). The action is given by the relative de-
flection angle induced by the dipole magnet (or-
ange). Two discrete actions are possible – either
increasing or decreasing the deflection angle by
a small, fixed amount of 15 µrad. The allowed
range of deflection angles is [−140, 140] µrad. The
reward is calculated as the overlap integral be-
tween the target and the beam in the interval
x ∈ [−3σbeam, 3σbeam], assuming a Gaussian par-
ticle distribution with transverse rms size σbeam.

3.3.2 Results: classical deep Q-learning vs FERL

Figure 5 shows convergence studies of policy op-
timality vs number of training steps for the clas-
sical DQN (red) and the FERL (blue) agents af-

ter performing extensive hyperparameter optimi-
sation. The optimality metric is defined as the
fraction of the state space from where the trained
agent will take optimal actions to reach the re-
ward objective with the smallest number of steps
possible. The classical agent uses a DQN archi-
tecture with two hidden layers with 128 nodes
each. The number of hidden layers and the num-
ber of nodes per layer have been treated as hyper-
parameters, in addition to the parameters listed
in Section 3.2. The same number of nodes was
assumed in every layer. The FERL agent, on the
other hand, uses a 1× 2 unit-cell Chimera graph
QBMwith a total of 16 qubits following the topol-
ogy of the D-Wave 2000Q quantum annealer [22].

Two main conclusions can be drawn from this
result. First, FERL significantly improves sam-
ple efficiency compared to the classical approach.
With experience replay enabled, the number of
training steps required to reliably achieve policy
optimality of 100 % is 10 steps for FERL and 380
for DQN. Second, for the given RL task, the im-
pact of experience replay is significant not only
for classical deep Q-learning (a well-known re-
sult [11]) but also for the FERL algorithm. Im-
provements in sample efficiency of a factor of 400
for DQN and 10 for FERL were observed when
enabling experience replay.

In addition to improved sample efficiency, the
QBM employed for FERL also exhibits a higher
descriptive power than the classical DQN. This is
illustrated by the plot in Fig. 6. It shows the re-
quired number of training steps to achieve 100 %
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Figure 5: One-dimensional beam target steering environment with a continuous state and discrete action space:
convergence study for agent optimality vs the number of training steps without (left) and with (right) experience
replay for a classical DQN (red) and an FERL (blue) agent shown on a log-log scale.
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Figure 6: Required number of training steps to train a
policy with 100 % optimality vs number of DQN weights
for different architectures (red, green, orange) and the
FERL (blue) agent, respectively. The labels next to each
data point denote the number of nodes per hidden layer.

policy optimality vs the number of parameters
in the Q-network on a log-log scale, with experi-
ence replay enabled. For the classical case, results
for DQNs with one (red), two (green), and three
(orange) layers are shown. Each data point has
been obtained from a convergence scan with sev-
eral training steps after individual hyperparam-
eter optimisation. The labels next to the data
points refer to the number of nodes per hidden
layer. The performance of the FERL agent using
a 1 × 2 unit-cell Chimera graph described above
is shown in blue. It trains an optimal policy in
only 10 steps using a QBM with 52 weights, while
the most sample-efficient classical agent trains in
about 380 steps requiring a DQN with two hidden
layers and a total of about 104 weights. A classi-
cal agent with just one hidden layer and 64 nodes

(258 DQN weights total) can also be trained suc-
cessfully. However, it requires more than 500
training steps to become optimal. Adding more
than two hidden layers does not seem to improve
the sample efficiency further for the RL task un-
der consideration.

3.3.3 Results: SQA vs D-Wave Advantage QA

Figure 7 shows the state-action value estimates
Q̂(s, a) (top), the derived greedy policy (middle),
and histograms of the states visited during the
training phase (bottom) for FERL agents trained
with SQA (left) and on the D-Wave QA (right),
respectively. The grey area marks the region
where the beam intensity on target is beyond the
set threshold, i.e. the reward objective is reached.

The agent has only visited 15 states during
training in both cases. While the specific values
of the learned Q-functions are not the same, in
both cases, one obtains greedy policies which are
100 % optimal. The hyperparameters were tuned
with SQA and were directly used on the D-Wave
QA. The results demonstrate that the RL agent
can be trained successfully on a real QPU. Fur-
thermore, the number of states visited during the
entire training phase is comparable to what was
required using SQA (Fig. 5, right, blue curve).

3.4 Study B: hybrid A-C scheme
3.4.1 Motivation and description of the algorithm

In the A-C scheme depicted in Fig. 2, it is possible
to replace the classical Q-network with a QBM.
This allows combining FERL with the policy up-
date of a classical actor network and means that
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Figure 7: Q-value estimates after training (top), derived greedy policies (middle), and histograms of visited states
during training (bottom) on the one-dimensional beam steering environment with continuous state space. The
training was performed using SQA (left) and running on the D-Wave QA (right).

only one state-action pair evaluation is needed at
every iteration.

Given the impressive results for Q-learning
with FERL it is expected that the FERL critic
also trains more efficiently in the hybrid A-C
scheme, which should speed up the convergence
of the actor network.

One main ingredient to the A-C scheme is the
policy gradient evaluation (Eq. 3) which includes
the calculation of the derivative ∇aQ(s, a|θ),
where Q(s, a|θ) is given by Eq. 6. Using nu-
merical differentiation with finite differences is
the most straightforward method of estimating
this derivative without making additional as-
sumptions on the probability distributions of spin
configurations c. Alternatively, one could con-
sider a semi-analytic approach. The calculation
of ∂v=(s,a)Heff

v is straightforward. However, the
derivative of the entropy term cannot be easily
evaluated except if P(c|v) ≈ 1 for a specific spin
configuration c = c0, given a configuration of visi-
ble nodes v, in which case the entropy term would
be negligible. This paper does not develop the
latter approach further, and numerical differenti-
ation with finite differences is used instead.

The hybrid scheme also has the advantage that
once the agent is trained, the (quantum) critic is
no longer required at inference time. Since the
policy is represented by a purely classical net-
work, deploying the trained agent in a real-world
environment becomes straightforward. This is
particularly true in a sim-to-real RL setting, as

discussed for the AWAKE beam line below.

3.5 The CERN AWAKE facility

The Advanced Wakefield Experiment (AWAKE)
at CERN uses high-intensity 400GeV proton
bunches from the Super Proton Synchrotron
(SPS) as a plasma wakefield driver. Elec-
tron bunches are simultaneously steered into the
plasma cell to be accelerated by the proton-
induced wakefields. Electron energies up to
2GeV have been demonstrated over a plasma
cell of 10m length corresponding to an electric
field gradient of 200MV/m [2]. The ultimate
goal for AWAKE is to reach a field gradient of
1GV/m. These numbers are to be compared to
conventional accelerating structures using radio-
frequency (rf) cavities in the X-band regime,
which are currently limited to accelerating field
gradients of about 150MV/m [34].

3.5.1 Environment and RL task

The AWAKE electron source and beam line are
particularly interesting for algorithm preparation
and testing due to the high repetition rate and in-
significant damage potential in case of losing the
beam at accelerator components. The AWAKE
electrons are generated in a 5MV photocathode rf
gun, accelerated to 18MeV and then transported
through a beam line of 12m to the AWAKE
plasma cell. The trajectory is controlled with 10
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Figure 8: Schematic of the electron beam line of the
CERN AWAKE experiment with 10 trajectory correctors
and 10 beam position readings along the line.

horizontal and 10 vertical steering dipoles accord-
ing to the measurements of 10 BPMs, see Fig. 8.
The BPM electronic read-out is at 10Hz and ac-
quisition through the CERN middleware at 1Hz.

A hybrid A-C model was used for trajectory
correction on the AWAKE electron beam line
with the goal that the trained agents correct the
line with similar accuracy as the response matrix-
based singular value decomposition (SVD) algo-
rithm that has been traditionally used [35].

The RL problem of the AWAKE electron beam
line is formalised as follows. The state s is de-
fined by a ten-dimensional vector of horizontal
beam position differences measured with respect
to a reference trajectory. Similarly, the action is a
ten-dimensional vector of corrector dipole magnet
kick angles within a range of ±300 µrad. Finally,
the reward is defined as the negative root-mean-
squared (rms) of the measured beam trajectory
with respect to the reference at all the BPMs.

3.5.2 Results: SQA

Figure 9 shows the convergence of the classical vs
hybrid A-C algorithms after hyperparameter op-
timisation. 15 instances of each algorithm were
trained and evaluated on 500 random episodes.
The points correspond to the mean number of
steps required for the trained actor network to
reach the reward objective, set to an equivalent
trajectory rms of 1.6mm, starting from a ran-
dom initial state. The confidence bound corre-
sponds to the standard deviation over the dif-
ferent instances and variation in the evaluation
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Figure 9: Comparison of the classical (blue) and hybrid
(red) A-C algorithms in terms of the number of required
agent-environment interactions, i.e. sample efficiency, to
reach optimal agent behaviour. These are results after
extensive hyperparameter tuning. The hybrid A-C has
been trained using SQA.

of episodes. The number of agent-environment
interactions does not necessarily correspond to
the number of weight updates of the critic and
actor networks since a fraction of the agent-
environment interactions at the beginning of the
training is obtained following a random policy to
fill the replay buffer. The fraction of initial ran-
dom interactions is a hyperparameter tuned with
Ray Tune. The QBM consists of 4×4 unit cells
of the D-Wave Chimera graph (8 qubits each) and
features 128 qubits [22].

For the case of the AWAKE trajectory steer-
ing environment, an improvement in sample ef-
ficiency of about 30 % of the hybrid A-C algo-
rithm over the classical counterpart can be ob-
served. With the hybrid A-C, a near-perfect be-
having actor is obtained after training with 50
agent-environment interactions. The classical al-
gorithm requires about 70 interactions. The ad-
vantage of the hybrid A-C algorithm in terms of
sample efficiency may be more apparent for en-
vironments with more complex dynamics requir-
ing a lot more agent-environment interactions for
successful training. This is currently under study.

Figure 10 illustrates the performance differ-
ences between the classical and hybrid A-C agents
after training for 50 and 70 agent-environment
interactions, respectively. Histograms show the
required number of steps and initial and final re-
wards during the evaluation phase. Comparing
the results for the hybrid A-C after 50 (red) and
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respectively, after 50 and 70 interactions between agent and environment. Shown are the number of steps taken
(left), the distribution of initial rewards (middle), and the distribution of the final rewards at the end of an episode
(right). The evaluation has been performed with 500 randomly initialised episodes.

70 (orange) interactions demonstrates that there
is no additional improvement in performance with
more training iterations, neither in the number of
required steps to reach the objective nor in the fi-
nal reward values achieved. On the other hand,
the classical A-C agent trained for 50 interactions
(blue) has not yet converged. This is visible from
the distributions of required steps and the final
rewards. In about 8 % of evaluation episodes, the
agent did not manage to solve the task in the
10 steps available. Accordingly, the final rewards
are far from the objective for these cases. Fi-
nally, comparing the performance of the classical
A-C after 70 interactions (green) with any of the
hybrid A-C results, the classical agent shows a
better behaviour in terms of required steps: it al-
ways reaches the objective within 1 step, while
the hybrid agents require 2 steps in about 5 % to
7 % of cases. Regarding final rewards, the hybrid
agents achieve slightly better mean values than
the best classical agent, although with a larger
variance. Given the statistical fluctuations, no
clear statement can be made here.

3.5.3 Results: D-Wave Advantage QA

The developed hybrid A-C algorithm was also
tested on the D-Wave Advantage system. Due to
the limited QPU time available, the problem was
slightly modified to ensure that it could be solved
within the given time frame. To that end, the re-
ward objective was relaxed from an rms value of
1.6mm to 2mm. Using SQA, training param-
eters, such as the number of agent-environment
interactions and replay batch size, were adjusted
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Figure 11: Single RL agent training evolution on D-
Wave Advantage Systems using the simulated AWAKE
environment with a reward objective of −2mm.

to adapt the problem to run successfully within
the available QPU time.

The training evolution of the RL agent in
the simulated AWAKE environment is shown in
Fig. 11. From around episode 30 onwards, the
agent consistently reaches the reward objective.
The evaluation of the actor network trained on
the D-Wave Advantage (blue) and SQA (red)
on 500 randomly initialised episodes are shown
in Fig. 12. The plot on the left-hand side dis-
plays the number of steps required to reach the
reward objective from the initial random state.
The middle and right-hand side plots show the
distribution of initial and final rewards. The QA-
trained agent typically reaches the reward objec-
tive within 1 step (80 % of cases). Occasionally, it
requires 2 steps (18 %), and rarely 3 steps (2 %),
but it reduces the beam trajectory excursions to
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Figure 13: Training of RL agent (SQA) on the simulated
AWAKE environment for deployment on the real beam
line.

an rms better than 2mm in 100 % of cases.
A direct comparison with an RL agent trained

with SQA is shown in Fig. 12. Both agents were
trained with identical hyperparameters. The
plots show that their performance is comparable,
particularly in terms of the number of steps re-
quired to reach the reward objective. The agent
trained on the D-Wave QA seems to produce
marginally better results on average as can be
seen from the distributions of final rewards in
Fig. 12.

3.6 Results: deployment on real beam line

The hybrid A-C agents were also evaluated in
the real AWAKE environment to test sim-to-
real transfer. Both agents – trained on D-Wave
QA hardware (Fig. 14, bottom row) and with
SQA (Fig. 14, top row) – were tested. The

training evolution is given in Figs. 11 and 13
with reward objectives set to −2.0mm (QA) and
−1.6mm (SQA), respectively. The number of
agent-environment interactions is shown (top) to-
gether with the evolution of initial and final re-
wards during the training period. As explained
above, using the hybrid A-C scheme, the QBM-
based critic is no longer required at inference time
since the policy is encoded entirely in the classical
actor network.

Figure 14 shows histograms of the required
number of steps as well as initial and final rewards
on the simulated (red) and real (blue) AWAKE
environments during evaluation. Note that the
agents were deployed in the real-world environ-
ment without additional training. Both agents
can solve the tasks in the simulated and real
AWAKE environment. Also, both agents perform
better in the simulated environment in terms of
final rewards and number of steps required indi-
cating small differences between the simulation
and the real beam line. While the measurements
on the real beam line were performed back-to-
back for the SQA- and QA-trained agents, the
distribution of initial rewards (blue, middle col-
umn) does not fully overlap, with a tendency
towards more challenging episodes for the QA-
trained agent (bottom row). The QA-trained
agent failed to solve the task for one of the initial
states in the real environment, likely indicating
that its training had not fully converged due to
the limited QPU time available.
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Figure 14: Top: evaluation of an SQA-trained agent on the simulated and real AWAKE environments (reward
objective: −1.6mm). Bottom: evaluation of the D-Wave QA-trained agent in the simulated and real AWAKE
environments (reward objective: −2.0mm). Shown are the distributions of the number of steps required to reach
the reward objective from random initial states (left), as well as the initial (middle) and final (right) rewards.

4 Conclusions

Earlier research has demonstrated that free
energy-based reinforcement learning (FERL)
with quantum Boltzmann machines (QBM) can
remarkably increase the sample efficiency com-
pared to the classical deep Q-learning (DQN) al-
gorithm. The results were obtained for control
problems defined in discrete action-space environ-
ments. This article confirms the improved train-
ing efficiency of FERL compared to DQN on the
example of the beam trajectory correction task
in the TT24-T4 beam line delivering protons to
CERN’s fixed-target physics experiments. The
task was defined using discrete actions but con-
tinuous states, extending the applicability of pre-
viously reported FERL methods in the literature
where the state and action spaces were both dis-
crete. Another interesting result was that FERL
learns very efficiently even without experience re-
play, but the sample efficiency improves further
and by a significant amount when including it.

In a second study, this paper investigated
whether the increased sample efficiency could
be exploited for continuous action-space envi-
ronments often encountered in real-world control

problems. To that end, the authors developed
a hybrid RL model that can handle continuous
states and actions. Inspired by the actor-critic
scheme of the Deep Deterministic Policy Gradi-
ent (DDPG) algorithm, the critic network was
replaced by a clamped QBM and trained using
the FERL approach. Based on the simulated
ten-dimensional trajectory correction problem of
the AWAKE electron beam line, RL agents were
trained with the new method employing simu-
lated quantum annealing and D-Wave Advantage
quantum annealing hardware. The agents were
then successfully evaluated in the real facility. An
increase in sample efficiency was again observed,
but the improvement compared to the classical
algorithm was not as significant as for the dis-
crete action space problem. Further studies will
be carried out to test whether this is generally
true or only for the problem studied here, which
has linear dynamics. As a final note, the chosen
hybrid quantum actor-critic architecture also has
a practical advantage – at inference, i.e. in the
accelerator control room, only the classical actor
network is required which greatly simplifies de-
ployment and usage for accelerator operation.
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A Complementary results
A.1 FERL Q-learning with discrete, binary state-action space
Figure 15 shows the results of policy optimality vs number of training steps with the classical deep
Q-learning (red) and FERL (blue) agents, without (left) and with (right) experience replay. Again,
the study is based on the one-dimensional TT24-T4 target beam steering environment described in
Section 3.3.1. However, this time it uses a discrete, binary state-action space, in analogy to the studies
in [8].

Similarly to Fig. 5, which was obtained for a continuous state space, the results here show that the
FERL agent manages to outperform the classical deep Q-learning agent. However, the gain in sample
efficiency is much smaller than in the former case. Again, the comparison between the left and right
plots confirms the importance of experience replay for both types of algorithms. In the best case, the
FERL algorithm reliably reaches 100 % optimality with about 100 training steps, while classical deep
Q-learning requires about 220 steps.
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Figure 15: One-dimensional beam steering environment with a discrete, binary state-action space: convergence study
for agent optimality vs the number of training steps without (left) and with (right) experience replay for a classical
DQN (red) and an FERL (blue) agent shown on a log-log scale.
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