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The emergence of a collective behavior in a many-body system is responsible of the quantum
criticality separating different phases of matter. Interacting spin systems in a magnetic field offer
a tantalizing opportunity to test different approaches to study quantum phase transitions. In this
work, we exploit the new resources offered by quantum algorithms to detect the quantum critical
behaviour of fully connected spin−1/2 models. We define a suitable Hamiltonian depending on
an internal anisotropy parameter γ, that allows us to examine three paradigmatic examples of
spin models, whose lattice is a fully connected graph. We propose a method based on variational
algorithms run on superconducting transmon qubits to detect the critical behavior for systems of
finite size. We evaluate the energy gap between the first excited state and the ground state, the
magnetization along the easy-axis of the system, and the spin-spin correlations. We finally report
a discussion about the feasibility of scaling such approach on a real quantum device for a system
having a dimension such that classical simulations start requiring significant resources.

I. INTRODUCTION

The abrupt change of the system properties during a
phase transition has always paved the way to the ad-
vancement of our understanding of nature in both funda-
mental and applied aspects. The phase transition mech-
anism, in the limit of an infinite number of particle com-
posing the system, has been successfully addressed within
the formalism of the renormalization group [1, 2]. Quan-
tum phase transitions are the cornerstone of a great va-
riety of groundbreaking theories ranging from the Higgs
mechanism for mass generation in high-energy physics
[3, 4], to the superfluid and superconducting phase of
matters in low-energy physics [5, 6], and nowadays their
exploitation is getting attention also in the context of
quantum technologies [7, 8].

Given a Hamiltonian H(~λ), describing a system consti-
tuted by N interacting particle, it exhibits a continuous
(or second order) quantum phase transition, whether in
the limit N → ∞, the gap between the ground state
energy and that of the first excited state vanishes for a
certain value of the internal parameters ~λ. This value
corresponds to the critical point of the model and, in
contrast to any classical model, it can also exist for zero
temperature [9, 10]. Nevertheless, assuming a diverging
number of particle is well motivated and substantiated.
The relaxation of such assumption prompts the study of
finite-size corrections to such transition [11, 12] that can
show unprecedented results [13–15]. With abuse of nota-
tion we write that a quantum phase transition occurs in
a system with finite N , whenever for a value of ~λ, a cross-
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ing between the energies of the ground state and the first
excited level is observed. This is in contrast to what one
would expect by a semi-classical approach in which the fi-
nite size is responsible to suppress the symmetry breaking
mechanism associated with the second-order phase tran-
sition [11, 16]. Criticality of quantum system requires
an exponential number of degrees of freedom that makes
the problem quickly intractable. The advancement of
machine learning techniques has been of paramount im-
portance for the determination of macroscopic phases of
matter and efficient quantum state representation.

With the advent of quantum techniques in machine
learning, phase diagram of different systems have been
obtained, such as a cluster Ising or the Bose-Hubbard
model at zero temperature. The former uses a super-
vised learning approach where the states are classified
according to classical labels using a quantum convolu-
tional neural network [17, 18] while the latter discovers
the phases in an unsupervised way using anomaly de-
tection [19]. The intersection between machine learning
and quantum techniques applied to physical systems is
rapidly increasing, not only obtaining information about
critical point of a system is pursued but also general dy-
namical simulations are important testbeds. In [20] the
authors rigorously analyze the requirements of an algo-
rithm in terms of training data and define generalization
bounds for their effective execution on current quantum
device. For an overview of the state of the art and future
perspectives for quantum simulation, looking at possible
quantum advantage in specific applications we refer to
[21].

We consider the Lipkin-Meshkov-Glick (LMG) model,
a fermionic model that served as testbed for many-body
approximations in different fields [22–24]. Due to the
possibility of mapping this model into a N spin−1/2 sys-
tem, we will study its criticality with current quantum
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computation techniques on real Noisy-Intermediate-Scale
Quantum (NISQ) devices [25, 26].

Here, we propose a way to study the finite-size crit-
ical behavior of the system with the freshly introduced
methods of quantum machine learning. Our motivation
is threefold. Firstly, very few examples of such methods
have been used to study magnetic systems [27]. Sec-
ondly, the finite size critically with regard to this model
is of interest to the molecular magnetism community [28].
Lastly, and a bit ambitiously, we would like to pave the
way to a feasible application of the nowadays-available
NISQ hardware as a tool to simulate physics with (quan-
tum) computers. In fact, before addressing more com-
plex magnetic systems, we have chosen as a testbed a
magnetic model that due to its symmetries served to val-
idate geometrical methods developed in the framework
of quantum information [29–31] as signature of quantum
phase transitions. However, the class of models that can
be studied are not so trivially integrable to be considered
as a mere academic exercise.

A simplified version of the spin model that we consider
has been tackled in recent papers [32–35] for system up
to four spins and the analysis is carried on noiseless sim-
ulators. This allows us to contribute to the validation
of a heuristic approach such as the Variational Quantum
Eigensolver (VQE) [36, 37] in the challenging research
field of the statistical physics of finite-size models on a
lattice.

The remainder of this manuscript is structured as fol-
lows: in Sec.II we provide a short but comprehensive
introduction to the VQE technique, then we focus on
the definition of the wavefunction ansatz in terms of de-
sign and trainability of quantum circuits and we provide
an overview of the adopted error mitigation techniques,
with ad-hoc consideration for the specific Hamiltonian.
After introduucing all the tools, we terminate the sec-
tion with the definition of the LMG Hamiltonian of our
critical system. In Sec III, we substantiate our approach
showing simulated results obtained under ideal condition
with quantum simulator as well as evidences collected on
real quantum device. In Sec. IV, we provide a numerical
interpretation and analytical derivation of higher order
excited states for the LMG model, as well as their reali-
sation with the variational algorithm. Finally in Sec. V,
we summarise the outcomes of this work, discussing the
quality of the results with an estimation about the actual
feasibility of studying proposed models-like on NISQ de-
vices.

II. METHODS

In this section, before introducing the Hamiltonian of
a LMG critical system and its behaviour in the ther-
modynamic limit, we review the quantum computational
techniques that we employ to assess the critical behavior
of the system.

A. Variational Quantum Eigensolver

The VQE, proposed by Peruzzo et al. [36], is a varia-
tional quantum algorithm [38] used to find the ground
state of a Hamiltonian H by using the Rayleigh-Ritz
variational principle. This variational method has been
widely applied in quantum chemistry [39–42], nuclear
physics [43–45] and in spin systems [32–35, 46–48].

Concretely, a parametrized wavefunction |ψ(θ)〉 [49] is
prepared on a quantum computer and its parameters up-
dated to minimize the energy

E0 ≤
〈ψ(θ)|H |ψ(θ)〉
〈ψ(θ)|ψ(θ)〉

(1)

where the normalization factor at the denominator can
be dropped if the wavefunction is normalized.

The design of the wavefunction ansatz is of importance
for the trainability and accuracy of the results and is an
active area of research. Some systems, typically written
in the second quantisation formalism, allow physically
motivated ansätze, for instance based on unitary cou-
pled cluster [39, 44, 45, 50, 51]. In this setting the related
quantum circuits are usually deep, require an increased
connectivity, and are therefore difficult to implement on
near term quantum devices. On the other hand, hard-
ware efficient ansatz (HEA) [40] are tailored to the device
and are consequently shallow enough to minimize the ef-
fects of noise and decoherence. Despite working with
shallow circuit, in general HEA may suffer from scala-
bility issues due to the increasing number of parameters
to optimise, leading to untrainability issues, namely bar-
ren plateau [52]. An alternative direction to optimise the
choice of the ansätze is the possibility of exploiting sym-
metries in the system. As recently proposed in [53] it is
possible to work with equivariant ansätze which might
mitigate the barren plateau problem. However, as un-
derlined by the authors, there exist always a trade-off
between the equivariance and expressivity of the para-
metric circuit.

More recently, the ADAPT-VQE [54], which builds the
ansatz by iteratively adding a term from an operator pool
bringing the best improvement, has been proposed as a
way to build optimal circuits. Even if the picking action
can be implemented in a parallel fashion, it can be expen-
sive for current devices, time and resources-wise. Conse-
quently, we will focus on fixed hardware efficient ansätze,
which are constructed with single qubit rotations around
the y-axis, and CNOT interactions with linear connec-
tivity.

The VQE can be extended to compute excited states
as well. The method adopted here is the one proposed by
Higgott et al. [55], called variational quantum deflation
(VQD), which first computes the ground state and then
looks for the state minimizing the energy while being
orthogonal to the, previously determined, ground state.
This procedure can be generalize for the k-th excited
state in an iterative fashion. In practice, the following
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loss function is minimized:

F (θk) = 〈ψ(θk)|H |ψ(θk)〉+
k−1∑
i=0

βi 〈ψ(θk)|ψ(θi)〉 , (2)

where we assume, for simplicity, that the states are nor-
malized. The wavefunction |ψ(θi)〉 corresponds to the
i-th excited state, and βi hyperparameters to be tuned.
It has been shown [55], that βi has to be greater than the
energy gap between the states i and i+ 1 to ensure that
the wavefunction converges to the correct excited state.
Additional techniques, based on the quantum equation
of motion [56], using a discriminator [57] or constrain-
ing the ansatz around the state of interest [58] have been
proposed in the literature but will not be considered here.

B. Ansatz

We use a simple hardware efficient ansatz [40], which
can be run on NISQ devices without an overhead due
to circuit transpilation. For instance, we use D repeti-
tions of a layer consisting of free rotations around the
y-axis Ry(θ) = e−iθσy/2, where σy is the y Pauli matrix,
CNOT gates with linear connectivity and a final rotation
layer before the measurements. Since the depth of the
circuits grows as O(N) due to the linear entanglement,
this ansatz fails on hardware when performing error mit-
igation based on noise scaling. We therefore adapt the
ansatz to grow as O(1), by applying the CNOT gates in
parallel, on the two following groups of qubits

{(i, i+ 1) for i even},
{(i, i+ 1) for i odd},

thus considerably reducing the depth of the circuits. We
observe a small decrease in the accuracy on the simulator
compared to the linear entanglement scheme, but an in-
crease on the hardware due to the depth’s reduction. We
choose the minimal case D = 1, as depicted in Figure 1,
when running on quantum hardware, while pushing for
maximal performance on the simulator by allowing larger
D.

C. Error Mitigation

Error mitigation methods are used to diminish the ef-
fect of the hardware noise on the results. Unlike error cor-
rection, these strategies are used in the post-processing
steps on the raw data. Two complementary techniques,
measurement error mitigation (MEM) and zero noise ex-
trapolation (ZNE), are used to mitigate the readout and
two-qubit gate errors, respectively.

For MEM, we follow Nation et al. [59] and individually
invert the error matrices

Mk =

(
P

(k)
0,0 P

(k)
0,1

P
(k)
1,0 P

(k)
1,1

)
(3)

Figure 1. Representation of the chosen ansatz to design
the parametric function ψ(θ), namely the Hardware efficient
ansatz, composed of Ry(θ) rotations and CNOTs between
neighboring qubits executed in parallel. We sketch here a sin-
gle layer of the circuit, corresponding to D = 1, higher values
of D correspond to sequential repetitions of such circuit.

and used them to calibrate the samples. Here, P (k)
i,j is

the probability of the k-th qubit to be in state j ∈ {0, 1}
while measured in state i ∈ {0, 1}. The probabilities of
measuring 0 or 1

~Sk =

(
P0

P1

)
(4)

obtained by measuring the k-th qubit are corrected as
follow

~Skcorrected = (Mk)−1~Sk. (5)

While this only corrects uncorrelated readout errors, it is
argued in Ref. [59] that they are the predominant ones.
Moreover, this strategy can be scaled for arbitrary num-
ber of qubits and only has a O(1) overhead in the num-
ber of circuit execution. In the ZNE [60, 61] scheme,
the CNOT noise is artificially stretched and the results
are then extrapolated to the noiseless regime. More pre-
cisely, the energy is estimated multiples time for different
scaling factor k ∈ {1, 2}, and then a fit is performed to
extrapolate up to the k = 0 value. In practice, the noise
is stretched by replacing every CNOT in the circuit, by
2k−1 CNOT gates. The 2k−2 additional CNOTs cancel
each other, leaving the circuit unchanged. However, by
adding barriers between them, preventing the CNOTs to
be cancelled in the transpilation phase, the noise is arti-
ficially stretched. Richardson [62] originally used a linear
fit for the extrapolation, however, the considerable effect
of the noise in NISQ devices increases the risk of over-
shooting. Consequently, an exponential fit f(x) = aebx is
instead used, where a and b ∈ R are fitted to the energies
E using least-square regression. To improve the results,
E is scaled before the fit

E 7→ E − s
s

(6)
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and scaled back afterwards, with s being an estimate of
the exact energy. In ZNE the scaling of sampling required
could also be exponential, at least in some cases [63]. Of
course this is just a theoretical upper bound in measure-
ment but in practise we use a scalable MEM method
which requires only 2 circuits as a sufficient quantity to
mitigate the noise.

It is important to make sure that the total runtime of
the noise-scaled circuits does not exceed the coherence
time of the device, which would destroy any useful in-
formation. For instance, we only considered k = 1 and
k = 2, since for higher k the results were not reliable
anymore. Also the ansatz definition plays an important
role, as described in sec.II B. With the construction of
Figure 1, the CNOT gates can be run in parallel, thus
shortening the runtime significantly. This can be done
using additional qubits available on the device to run all
the noise-scaled circuits in parallel, reducing the total
number of circuit execution, however for sake of meticu-
lousness one can note that in principle this strategy might
result in additional cross-talks, even if, looking at IBM
current hexagon topology, one can really minimize this
effect.

D. The Lipkin-Meshkov-Glick Model

The LMG model was introduced in [22–24] to describe
a system of N fermions, whose state space is made of two
degenerate shells with two fixed energy levels. Each shell
has degeneracyN and can accommodate all of theN par-
ticles, thus resulting in a total of a 2N -dimensional state
space. Due to the symmetry of the Hamiltonian with the
total spin, the low energy states are in the subspace of
maximum spin, which has a dimension that scales lin-
early with N . However, to substantiate our approach
we do not consider only the maximum spin sector of the
Hamiltonian but we use the VQE on the full space as out-
lined in Section IIA. Via a Jordan-Wigner transforma-
tion [64], the LMG model can be mapped into a system
of interacting spins. Moreover, in the thermodynamic
limit N →∞, it is solvable via a two-boson Holstein Pri-
makoff transformation [65]. This peculiarity made it one
of the most used model to understand many problems
of interest in physics, from nuclear to condensed-matter
physics.

Considering that we will study our model on qubit-
based quantum computers, it is natural and convenient
to use the following expression for the LMG Hamiltonian:

H = − 1

N

N∑
i<j

σixσ
j
x + γσiyσ

j
y −B

N∑
i=1

σiz. (7)

This Hamiltonian describes a system of N spins in a fully
connected planar graph, immersed in a transverse mag-
netic field B. The first sum in Eq.(7) accounts for an
anisotropic interaction in the x − y plane that couples

each spin with all the other ones with the same strength,
an archetype and exemplary version of any long-range in-
teraction. Different coupling strengths along the two pla-
nar direction are taken into account via the anisotropy
parameter 0 ≤ γ ≤ 1. From physical perspective, this
type of Hamiltonian has been implemented on various
platforms [66–69] to design feasible quantum technolo-
gies applications [70–75].

The system is known to be critical and shows, in the
thermodynamic limit, a second order phase transition be-
tween a broken-symmetry (disordered) phase for B < 1
and an ordered phase for B ≥ 1, with a critical value
of the external magnetic field B = Bc = 1. Usually, the
Lipkin model is used to denote a limiting and easily di-
agonalizable case of the LMG model [76]. Introducing
the set of collective-spin operators Sα = 1

2

∑N
i=1 σ

i
α, and

setting γ = 1 in Eq.(7), we have:

H = − 2

N
(S2 − S2

z )− 2BSz. (8)

The Hamiltonian in Eq.(8) is diagonal in the Dicke ba-
sis |j,m〉 formed by the simultaneous eigenvectors of
S2 |j,m〉 = j(j + 1) |j,m〉 and Sz |j,m〉 = m |j,m〉. Due
to the fact that the interaction term commutes with the
free energy term, the Lipkin model with γ = 1 belongs
to a different universality class of the general model de-
scribed by the Hamiltonian in Eq.(8), see [65]. In partic-
ular, it has been shown to belong to the same class of the
superradiant Dicke model [77]. Within our formalism,
we can also address the criticality of the fully-connected
Ising model imposing γ = 0. This model presents, in the
thermodynamical limit, a quantum phase transition due
the spontaneous breaking of the Z2 symmetry [78].

The phase diagram of this model at zero temperature
was derived in [79], thanks to a two-boson Schwinger bo-
son realization of the SU(1, 1) Richardson-Gaudin inte-
grable models. However, classifying phase transitions in
systems having finite number of elements is a challenging
and an open problem. In particular, in the quantum do-
main, the issue relating to the scaling of the Hilbert space
size, such us the exponentially growing size of the Hilbert
space for the considered systems, impacts strongly the
performance of classical techniques.

We will study the precursors of the quantum phase
transition for the finite size LMG model via quantum
computational techniques. With abuse of notation, we
will call the values of the magnetic field B and of the
anisotropy γ, for which the ground state and the first
excited state of the system are degenerate, critical values.

The adopted strategy can be easily extended to other
critical systems, but the choice of the LMG model to test
our approach is driven by two reasons. On one side, the
model is of interest for several communities and it has
been used to test many-body approximations [65, 80].
The expression in Eq.(7), in terms of Pauli operators,
makes the implementation on a superconducting quan-
tum processor quite straightforward and requires less
physical resources compared with its fermionic formula-
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tion. On the other side, the model has some peculiari-
ties, namely anisotropy and long-range interaction, that
makes it a non trivial model where to assess quantum
criticality at finite-size.

III. RESULTS

This section presents the numerical results obtained in
this work. We remark that a truly QPT is related to a
singular behaviour of the energy spectrum and the con-
sequent non-analyticity of several observable quantities
such as the magnetization. For systems of finite size a
critical behaviour occurs when the ground-state energy
has a level-crossing, viz., there is an interchange of the
ground-state level and the first excited-state at a critical
point. This reflects in a null energy gap at the critical
point and in a non-analytic behaviour of the mean mag-
netization along the model easy-axis. Sec. III A contains
the ground and first excited state energy and magne-
tization for N = 4, 5, 6 spins and different values of γ
and B obtained on state vector simulations and anal-
yse their behaviour in the anisotropic and isotropic case.
Sec. III B shows the ground state energy and magne-
tization for N = 5 spins, γ = 0.49 and different values
of B computed on superconducting transmon qubits, and
comments on the scalability of the VQE in the near term.
We refer to for a detailed explanation about different
simulation backends and variational circuit optimizers.

A. Noiseless VQE Simulations

For a small number of spins N , the classical approach
of the diagonalization of H is straightforward. Defining
the spectrum of the Hamiltonian H |ψn〉 = En |ψn〉 with
n = {0, ..., 2N−1}, multiple crossing points between the
energies of the ground and the first excited state (EGS
and E1st, respectively) are found for the following critical
values

BkC =
N − k
N

√
γ, (9)

for a fixed γ, k ≤ N and odd [80]. Hence, the ground
state energy can be recasted in N/2 + 1 phases, if N
is even, or in (N − 1)/2 + 1 otherwise. Introducing
the ground-state magnetization along the model easy-
axis 〈Sz〉 = 〈ψ0(B, γ)|Sz |ψ0(B, γ)〉, we can observe
that for any nonanalytic point holds limB→Bk−

C
〈Sz〉 6=

limB→Bk+
C
〈Sz〉 ∀B(k)

C . In the following, we will denote
|ψ0〉 ≡ |ψGS〉 and |ψ1〉 ≡ |ψ1st〉 .

We use state vector simulations, as a theoretical tool
to explore more complex ansatz and increase the perfor-
mance as much as possible. We choose the depth of the
ansatz as a function of the system size, namely D = N .
This differs from the results obtained on real hardware,
as explained in Sec. II B. The training is performed with

Figure 2. We report the energies of the ground state EGS

and first excited one E1st of the Hamiltonian in Eq. (7) for
N = 4 and for value of the anisotropy parameter γ = 0.81 as a
function of the magnetic field B. Solid lines represent the val-
ues obtained via exact classical diagonalization, while discrete
points are the results obtained via VQE. The results for EGS

are marked in light blue with tri-down markers (state vector
simulation) and filled squares (QASM noiseless simulation),
while results for E1st are in orange with crosses marking the
state vector simulation and filled circles the QASM noiseless
outputs. Vertical dotted lines show crossing points for val-
ues given in Eq. (9). The inset makes it possible to better
appreciate the accuracy of energy estimates as a function of
the number of shoots, where the error bar correspond to one
standard deviation.

the SLSQP optimizer [81] with 2000 maximum iterations.
Adiabatic computing is applied to speed up the calcu-
lations and improve the accuracy, following the recom-
mendation of Harwood et al. [82]. The excited states are
found using a VQD-like algorithm. Using the state vec-
tor given by the solution of the Hamiltonian it is possible
to redefine a new effective Hamiltonian

H ′ = H + β0 |ψGS〉 〈ψGS | . (10)

When the superposition between |ψ1st〉 found by using
VQE on H ′ and |ψGS〉 is small the loss function associ-
ated to this Hamiltonian reduces to Eq. (2) with k = 1.
We found this to be true every time the β0 is set greater
than the energy gap between the ground and first excited
state, as specified in Sec.II A. Knowing that transitions
happen for B = BkC , see Eq. (9), we choose five points
between the transition points and the chosen bounds.
Starting from the upper bound, where the energy gap is
wider, the ground state energy and the first excited en-
ergy are evaluated using random initial parameters. For
each point in the interval, in decreasing order, the opti-
mal point found in the previous step are chosen as initial
parameters. Moreover, for the next interval, the optimal
parameters for the ground state are used as initial point
as well for the first excited state. This technique signifi-
cantly speeds up the simulation, improves the quality of
the results, and allows us to compute the energies for sys-
tems up to N = 10 spins, using state vector simulations.
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Figure 3. We plot the difference between the energy of the
first excited state E1st and the ground state energy EGS as
a function of the tuning field B. The results are shown for a
system with N = 5 lattice sites, focusing on different values
of the anisotropy parameter γ = 0.36, 0.81. The results ob-
tained via VQE are marked by blue crosses (γ = 0.36) and
orange dots (γ = 0.81). The blue dashed line (γ = 0.36)
and the orange dotted line (γ = 0.81) represent the exact
diagonalization values of E1st − EGS . Vertical lines corre-
spond to values of the critical magnetic field such that Eq.
(9) holds, where the label (I) refers to γ = 0.36, and label (II)
to γ = 0.81).

Figure 2 shows the ground and first excited state en-
ergy for a LMG Hamiltonian with N = 4 spins for the
specific value of γ = 0.81, as a function of the magnetic
field B. The VQE is compared to the exact diagonal-
ization (black solid lines), while the VQE points are ob-
tained using state vector simulation (crosses) as well as
shoots-based probabilistic output without hardware noise
contribution (filled squares and circles). Another figure
of merit to assess a quantum phase transition for finite-
size systems is the energy difference between the first
excited state and the ground state, namely E1st − EGS
(to which we will refer to as the gap, for shorthand of
notation). The gap as a function of the magnetic field
is shown in Figure 3 for N = 5 spins and two values of
γ, γ = 0.36, 0.81. Even if they are far from the extreme
values 0, 1 they already underline a difference in the be-
haviour, at least for B < 0.6. Similar considerations hold
as a function of the system size, shown in Figure 4 for
N = 4, 5, 6 with γ = 0.44. In both cases, the energy gap
rapidly explodes after B ≥ 0.6.

Finally, we consider the extreme cases of the fully-
connected Ising model and the Lipkin-Dicke model, for
γ = {0, 1} respectively. We report our results in Figure 5,
together with an intermediate γ value of 0.49, where the
system size is fixed to N = 5. The energy gap between
the first excited state and the ground state is shown in
(a), while the correlation function along the x−axis

〈
S2
x

〉
in (b) and the magnetization along the longitudinal di-
rection of the magnetic field 〈Sz〉 in (c). We have decided
to plot the correlation function

〈
S2
x

〉
because, due to the

spin-flip simmetry of the Hamiltonian in Eq. (7), the
mean value of the magnetization along the plane per-

Figure 4. We report the energy difference E1st − EGS as a
function of the magnetic field B. The results are computed
at γ = 0.44 for different lattice sizes N = 4 (blue), N = 5
(orange), N = 6 (red). The results obtained via VQE are rep-
resented by a blue cross (N = 4), an orange dot (N = 5) and
a red plus (N = 6), while the blue dashed line (N = 4), the
orange dotted line (N = 5), and a red dotdashed line (N = 6)
represent the values obtained by exact diagonalization of the
Hamiltonian H. The vertical lines correspond to the values of
the magnetic field for which by we observe a crossing points
between the two lowest state energies (see Eq. (9), they are
labelled with (I) for N = 4, (II) for N = 5 and (III) for N = 6
sites.

pendicular the magnetic field is zero (see [65].) We ob-
serve the oscillatory trend of the energy gap for γ = 1
as opposed to the monotonic trend of the isotropic case
(γ = 0). A completely different behaviour can be appre-
ciated also for the two magnetization observable, where
the anisotropic model is characterised by a stepwise trend
as opposed to the continuous one for γ = 0, signaling how
the three models in the thermodynamical limit belong to
distinct universality classes.

B. Runs on the Real Devices.

1. Experimental Device

The quantum device used in this work consists of
27 fixed-frequency transmons qubits, with fundamental
transition frequencies of approximately 5 GHz and an-
harmonicities of −340 MHz, with the same topology as
displayed in Figure 6. Microwave pulses are used for sin-
gle-qubit gates and cross-resonance interaction [83] for
two-qubit gates. The experiments took place over one
month, but each different computation took place over
span of five hours, without intermediate calibration, with
the use of Qiskit Runtime. The median qubit lifetime T1
of the qubits is 121 and 129 µs, the median coherence
time T2 is 90 and 135 µs and the median readout and
CNOT error is 0.014 and 0.045 respectively. The SABRE
[84] algorithm is used for the transpilation to the quan-
tum hardware.
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Figure 5. We report the three relevant quantities to detect the criticality in a fully connected spin system. In (a) we show the
energy gap E1st − EGS . In (b) we plot the correlation function

〈
S2
x

〉
, and in (c) the mean magnetization along the direction

of the magnetic field 〈Sz〉. The results are shown for N = 5 spins for particular values of the anisotropy identifying different
classes of models γ = 0 (fully connected Ising model), γ = 0.49 (LMG model), and γ = 1 (Lipkin-Dicke model). In all the
three plots, the results obtained via the quantum variational algorithm are represented by blue crosses (γ = 0), orange dots
(γ = 0.49), and red plusses (γ = 1) and the benchmarking is given by the corresponding exact diagonalization values, shown
as a blue dashed line (γ = 0), an orange dotted line (γ = 0.49), and a red dotdashed line (γ = 1). The results are in agreement
with the critical values in Eq. (9) and such values are reported as vertical lines (label (I) points the only trivial value for γ = 0,
(II) points critical values for γ = 0.49, and (III) for γ = 1).

Figure 6. Topology of the superconducting quantum de-
vice ibmq_kolkata with color map representation. Color as-
sociated to each qubit represents the readout error at the
time of calibration while the color of the connection between
two qubits represents the CNOT error rate. Image taken
from the IBM Q Lab https://quantum-computing.ibm.com/
services/resources?system=ibmq_kolkata

2. Small System Size

We begin by computing the ground state energy of
a system with N = 5 spins and γ = 0.49 for different
values of the magnetic field B. We use the hardware ef-
ficient ansatz with D = 1 repetition, as shown in Figure
1. As a warm initialization, the ansatz is first trained
on the noiseless simulator, and the optimal parameters
are used as an educated guess for the initial parame-
ters. The training is composed of maximum 100 steps,
or until convergence, with the SPSA [85] optimizer us-
ing a learning rate of 0.005 for the first 30 steps and
0.001 afterwards, using 8092 shots. The graphs are ob-

tained with 32000 shots and statistics are collected from
5 distinct runs. Measurement error mitigation and zero
noise extrapolation are performed to enhance the results,
which are shown in Figure 7. Solid lines correspond to
the exact diagonalization, the black dots to the noiseless
qasm simulation with 32000 shots, the blue crosses to the
raw results from the quantum device and the red ones to
the mitigated energies. The error bars correspond to the
99.5 % confidence interval. The inset shows the effect
of different error mitigation tuning on a specific point.
The k = 1 point correspond to the original circuit while
k = 2 to the dilated case, where every CNOT is replaced
with three CNOTs. The cross shows a scaled exponential
fit while the triangle a linear one. As motivated in Sec.
II C, the linear fit overshoots the true ground state en-
ergy, while this is not the case for the scaled exponential
fit.

We observe that the ground state energy is reproduced
with less than 1% error ratio everywhere, suggesting that
the quality of current devices is good enough for such
tasks. However, the computed magnetization observ-
ables are not equally accurate. The explanation is two
folds: first, we observe that the noiseless simulations are
also less precise than the energy calculations, more par-
ticularly for

〈
S2
x

〉
at large magnetic field. This is es-

sentially caused by the ansatz which is too shallow to
represent the true ground state, but instead is only a
good approximation with similar energy. But more im-
portantly, there is a discrepancy between the noiseless
and real hardware results, which is due to overfitting to
the hardware noise. For the ground state calculation the
noise is adapted to get to the GS, according to the real
condition, which includes the presence of noise, and this
is why we refer to this as an overfitting behaviour. By
doing so, we get closer to the true energy, but drift from
the true ground state. The approximation in computing
the correct ground state is amplified when

〈
S2
x

〉
and 〈Sz〉

https://quantum-computing.ibm.com/services/resources?system=ibmq_kolkata
https://quantum-computing.ibm.com/services/resources?system=ibmq_kolkata
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Figure 7. We report the three relevant quantities to detect the criticality in a fully connected spin system, using the VQE
algorithm run on the superconducting device ibmq_kolkata. The energy gap E1st − EGS is in (a). The mean value of two
magnetic observables: in (b) the correlation function along an axis transverse to the magnetic field

〈
S2
x

〉
, and in (c) the mean

magnetization along the direction of the magnetic field 〈Sz〉. The results are done for a lattice size of N = 5 spins at γ = 0.49.
Points are obtained on the superconducting device ibmq_kolkata with (red crosses) and without (blue tri-left markers) error
mitigation. The experimental values are compared to noiseless simulation (black dots) and the final benchmark is given by
the exact diagonalization values (solid line). The inset in (a) shows the extrapolation to the zero noise regime, both with an
exponential and linear fit.

are computed shifting uniformly the curve.

3. Discussion on Large System Size

Finally, we tried to extend the reach of VQE to sizes
where simulations are unavailable due to the exponen-
tial scaling of the Hilbert space. Even if density-ma-
trix renormalization group (DMRG) [86] techniques are
able to compute the ground state energy for large num-
ber of spins (∼ 102), we choose N = 20 since it is out
of reach, in terms of simulation time, for our availabil-
ity. This problem is more interesting than the previous
case since we are unable to start from a set of previously
trained parameters. In addition, these calculations are
also more challenging for current devices for the follow-
ing reasons. Gradient-free optimizers, such as SPSA, re-
quire small amount of circuit executions to estimate the
gradient. Yet, since they rely on finite difference tech-
niques, the gradient is strongly affected by the noise and
can lead to erratic path in the optimization landscape.
On the other hand, analytical gradients provided by the
parameter-shift rule [87] are more reliable, but also more
expensive to compute since they require 2 · d circuit ex-
ecutions, where d is the number of parameters (d = 40
in this case). Accordingly, we estimate more than one
hour runtime per optimization step, accounting for er-
ror mitigation techniques e.g. ZNE and MEM, which
is more than what we can reasonably obtain from on a
shared device and without running into further recalibra-
tion problems [88, 89]. This is one of the main reason why
innovative integrated architecture of quantum and clas-
sic computer like the one proposed by IBM with Qiskit
Runtime would strongly reduce the computation time.

Figure 8. Representation of various excited states for N = 4
and γ = 1. VQE results are represented by a blue cross
(ground-state), an orange dot (1st excited state), a red plus
(2nd excited state), and a black triangle (3rd excited state).
The blue dashed line (ground state), the orange dotted line
(1st excited state), the red dotdashed line (2nd excited state),
and the black solid lines (3rd, 4th, 5th and 6th excited states,
some are degenerate) represent the classical diagonalization
values. Vertical lines indicate crossing points.

IV. HIGHER EXCITED STATES

The VQE can be used to compute the energies of the
second and third excited states as well. Figures 8 and
9 show the seven lowest energy eigenvalues for a system
of N = 4 spins, as a function of the magnetic field B
at two different interaction configurations γ = {1, 0.67},
respectively. The simulations are performed using state
vector and superimposed to exact diagonalization. For
γ = 0.67, VQE seems at first to fail in computing the 3rd
excited state, but actually finds degenerate states. To
better understand the degeneracy, let us consider γ = 1

https://research.ibm.com/blog/qiskit-runtime-for-useful-quantum-computing
https://research.ibm.com/blog/qiskit-runtime-for-useful-quantum-computing
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Figure 9. We plot the energies E2nd and E3rd of the two
excited states, beyond the first one, for the Hamiltonian in
Eq. (7) with N = 4 at the value anisotropy γ = 0.67. In
order to make the comparison clear, we report also the values
of the energies of the ground state EGS and of the first one
E1st. The markers of the VQE results are the following: blue
cross for the ground-state energy, an orange dot for the first
excited state, a red plus for second excited state, and a black
triangle for third excited state. Exact diagonalization results
are shown as a blue dashed line (ground state), an orange
dotted line (first excited state), a red dotdashed line (second
excited state), while the black solid lines are for the energies
of degenerated states (ranging from the third excited and up
to the sixth) Vertical lines indicate crossing points (see Eq.
(9).

and use Eq. (8) to obtain

H |j,m〉 =
[
−1

2
(j(j +1)−m2 − 2)− 2Bm

]
|j,m〉 . (11)

For N = 4 spins, j = 0, 1, 2, leading to 9 distinct degen-
erate values for the energies of the 16 eigenstates. The
first degenerate eigenvalue for B < 1

4 , is the one with
the j = 1, m = 1 quantum numbers. However, it be-
comes the fourth excited for 1

4 < B < 1
2 , the third for

1
2 < B < 5

4 , and finally the second for B greater than 5
4 .

Numerical investigations suggest an analogous behaviour
for γ 6= 1 and 0 < γ . 2. In the region B . 5

4

√
γ, the first

eigenvalue to be degenerate is the third excited while in
B & 5

4

√
γ, it is the second excited. Hence, VQE actually

shows in Figure 9 that for B ≈ 1.2, the third eigenvalue
is degenerate (3 times, in particular). The numerical in-
vestigations for γ = 1 show that the degenerate levels
are

• 3-fold: j = 1, m ∈ {0,±1},

• 2-fold: j = 0, m = 0,

in agreement with [77]. A similar argument can be ad-
dressed also to justify the behaviour of the energies of
the excited states for the model with γ 6= 1 as those
observed in Figure 9. However, the impossibility to di-
agonalize the two terms of the Hamiltonian in a common
basis would make the argument only less intuitive and
more cumbersome.

V. DISCUSSION AND OUTLOOKS

The advent of reliable quantum hardware, although
not yet fault-tolerant, has paved the way to novel tech-
niques to tackle problems from different research areas.
A natural avenue of research is the one that incorporates
the quantum computing techniques to understand the
physics of complex systems as many-body systems. To
this end, we have proposed a way to exploit the varia-
tional quantum eigensolver, and the algorithms stemmed
from it, for studying the finite-size criticality of paradig-
matic spin models. Upon introducing a Hamiltonian with
an anisotropic interaction γ in the x − y plane we have
studied the level crossings between the ground-state and
the first-excited state in the proper LMG (0 < γ < 1) and
in the two limit cases: the fully connected Ising model
(γ = 0) and the Lipkin-Dicke model γ = 1. We used as
figure of merit some relevant magnetic observables, i.e.,
the magnetization along the field direction and the spin-
spin correlation along the x−axis.

Due to the geometry of the system, no length scale
of the correlation can be defined, this makes the fully-
connected spin models interesting systems to look for
unconventional results at finite-size [65, 80] or to give
a quantitative evaluation of the quality of a new compu-
tational or experimental technique [66, 70, 76].

Looking at this LMG model the number of measure-
ments scale maximally at three, for the three independent
terms in the hamiltonian that do not commute. Accord-
ing to the results presented so far, it turns out that a
limiting factor in getting better performance is the noise
while barren plateau represents potentially a second or-
der factor.

Recently, several papers [32–35] addressed the Lipkin
model on a quantum computer to question whether tech-
niques and methods proper of quantum machine learning
can be employed in nuclear physics. In general, the au-
thors rely on system size of relatively small dimensions
N ≤ 4 performing a preliminary noiseless analysis for the
isotropic model that can be analytically solved exactly.

Our analysis is complementary to those previously car-
ried out and go into the direction of employing quantum
algorithms to have a direct insight on problems of rele-
vance in statistical physics. In fact, we have shown that
the VQE is a powerful tool to assess the quantum phase
transition of critical systems of finite-size. We have also
addressed how to mitigate the errors present when em-
ploying NISQ devices and how it is feasible on a real
hardware based on superconducting transmon qubits.

As final remark and open question we surmise that our
method could be employed in future, when better per-
forming hardware, with more qubits will be available, as
a benchmark for the renormalization group approaches
used to study the finite-size scaling behaviour of quanti-
ties of interest in statistical and condensed matter theory.
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Appendix: Performance of the optimizer

In this section we give additional information and
further explanation about the techniques adopted in
this work. The gate-based quantum circuits used in
this work are built using the open-source framework
qiskit-nature [90].

The state vector simulation results are referred to clas-
sical simulation of a quantum circuit, probing the poten-
tial of this approach under ideal conditions, such as using
exponentially many shots, without noise. For the opti-
mization in a state vector setting we use SLSQP [91],
Sequential Least SQuares Programming. It minimizes
a function of several variables with any combination of
bounds, equality and inequality constraints. We refer to
scipy for further details.
QASM results are still referred to a full classical sim-

ulation of a quantum circuit plus measurement. This
implies the simulation of probability outcomes of quan-
tum observable given as a sequence of bit strings with

the relative counts or number of repetitions. For the op-
timization in a state vector setting we use COBYLA [82].
This is a gradient-free optimizers, likewise the one used
for optimization on the quantum computer: the simulta-
neous perturbation stochastic approximation (SPSA) [85]
optimizer. Differently from gradient based optimization,
where the next best parameters in the optimization is ob-
tained from the gradient of a given function with a high
possibility to be stuck in a local minima/maxima when
traversing parameter(s), SPSA efficiently approximates
the gradient with few circuit evaluations by shifting the
parameters in two random directions. The learning rate
is changed at every bunch of iterations to ensure a fast
convergence at the beginning and avoid oscillations at
the end. Looking at realistic experiments, the stochastic
nature of SPSA makes it resilient to the statistical noise
coming from the finite number of measurements, making
it appealing for quantum devices. A quantum natural
variant of the SPSA optimizer using the geometry of the
Hilbert space has been recently proposed by Gacon et al.
[92]. In this variant the Hessian is approximated with six
circuit evaluations and significantly improves the opti-
mization efficiency of quantum circuits. In the present
work, this optimizer is not considered.

To better understand the performance and the be-
haviour of the optimizer we provide the loss curve during
the learning process for the SLSQP (state vector simu-
lation) optimizer in Fig.10. The energy difference in the
plot is given by:

log
Ecount − Efinal

Efinal
. (A.1)

The huge difference in the number of evaluations needed
between the first B value and B = 0.5 shows one of the
benefits of taking the last B value optimal parameters as
the initial ones for the next B.
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