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Generative modeling is a promising task for near-term quantum devices, which can use the stochas-
tic nature of quantum measurements as a random source. So called Born machines are purely
quantum models and promise to generate probability distributions in a quantum way, inaccessible
to classical computers. This paper presents an application of Born machines to Monte Carlo sim-
ulations and extends their reach to multivariate and conditional distributions. Models are run on
(noisy) simulators and IBM Quantum superconducting quantum hardware.

More specifically, Born machines are used to generate muonic force carrier (MFC) events resulting
from scattering processes between muons and the detector material in high-energy physics colliders
experiments. MFCs are bosons appearing in beyond-the-standard-model theoretical frameworks,
which are candidates for dark matter. Empirical evidence suggests that Born machines can reproduce
the marginal distributions and correlations of data sets from Monte Carlo simulations.

I. INTRODUCTION

Quantum computers have the potential to solve prob-
lems that are difficult for classical computers, such as
factoring [1] or simulation of quantum systems [2]. How-
ever, the unavailability of error-correcting codes and lim-
ited qubit connectivity prevents them from being used.
Nevertheless, noisy-intermediate-scale-quantum (NISQ)
[3] devices, characterized by their low number of noisy
qubits and short decoherence time, have already been
proven to be successful in domains such as machine learn-
ing [4–14] and quantum chemistry [15–17].

The present paper focuses on generative modeling in
quantum machine learning (QML), which is the task of
learning the underlying probability distribution π(y) of
a given data set and generating samples from it. In the
classical regime, generative models are often expressed
as neural networks. For instance, generative adversarial
networks (GANs) [18] and variational autoencoders [19]
have been successfully applied in a variety of fields, rang-
ing from computer vision [20] to natural sciences [21].
In high-energy physics (HEP), generative models have
been proposed as an alternative to Monte Carlo (MC)
simulations, e.g., to simulate detectors [22–24] and, very
recently, as a method to load distributions of elemen-
tary particle-physics processes [25]. MC calculations in
HEP, such as GEANT4 [26] and MADGRAPH [27], are
usually expensive in time and CPU resources [28]. Gen-
erative models provide a solution, e.g., by augmenting
small MC data sets or interpolating or extrapolating to
different regimes.

The probabilistic nature of quantum mechanics allows
us to define a new class of generative models: quan-
tum circuit Born machines (QCBMs). These models
use the stochastic nature of quantum measurement as
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randomlike sources and have no classical analog. More
specifically, they produce samples from the underlying
distribution of a pure quantum state by measuring a
parametrized quantum circuit [29] with probability given
by the Born rule pθ(x) = | 〈x|ψ(θ)〉 |2. Born machines
have been proposed as Bayesian models [13], using an ad-
versarial training strategy [11, 30], using optimal trans-
port [12], in a conditional setting [31], and adapted to
continuous data [32, 33]. Quantum neural networks us-
ing a Gaussian noise source [34] and quantum Boltzmann
machines [35] are both viable alternatives for quantum
generative modeling but will not be addressed in the
present paper. Quantum generative models also have
the ability to load probability distribution on a quan-
tum computer [11], which can then be used to integrate
elementary processes via quantum amplitude estimation
[25], for finance applications [36], or for variational infer-
ence [31] tasks.

Here, an extension to multivariate and conditional
probability distributions is proposed, exploring the lim-
itations of NISQ devices. Generating multivariate dis-
tributions with Born machines was already explored in
[37, 38], and the latter reference also focuses on HEP ap-
plications. Moreover, we introduce a conditional Born
machine for the generation of probability distributions
depending on an external parameter. The contributions
of the present paper are as follows:

(1) An alternative circuit design with a reduced
connectivity is proposed, which is better suited for
NISQ devices.

(2) While [31] focuses on conditional distributions in
a Bayesian setting, we instead propose a Born
machine conditioned on a parameter of the MC
simulations, which can be used to efficiently
generate data in different regimes.
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(3) All simulations are mapped to real quantum devices
and executed.

Experiments were conducted on (noisy) simulators and
superconducting devices from IBM Quantum (IBMQ)
using QISKIT-RUNTIME, the recent serverless archi-
tecture framework which handles classical and quantum
computations simultaneously on a dedicated cloud in-
stance. Noisy simulators incorporate gates and readout
errors, approaching real device performances. However,
their behavior can be genuinely different from noisy simu-
lators. Hence, this work emphasizes the use of real quan-
tum hardware and addresses related challenges.

This paper is organized as follows. Section II intro-
duces the physical-use case of muonic force carriers and
the preprocessing of the data set. The models are intro-
duced in Sec. III. More specifically, Sec. III A introduce
the quantum circuit Born machine, and Secs. III B and
III C the multivariate and conditional versions, respec-
tively. Section IV explains the training strategy. Results
are shown in Sec. V for all models on (noisy) simulators
and real quantum hardware and are discussed in Sec. VI.

II. MUONIC FORCE CARRIERS

A. Physical setting

Muon force carriers (MFCs) are theorized particles
that could be constituents of dark matter and explain
some anomalies in the measurement of the proton radius
and the muon’s magnetic dipole, making them exciting
candidates for new physics searches.

Following Galon et al. [39], we consider a muon fixed-
target scattering experiment between muons produced at
the high-energy collisions of the Large Hadron Collider
and the detector material of the Forward Search Experi-
ment (FASER) or the ATLAS experiment calorimeter.
In the ATLAS case [39], independent muon measure-
ments performed by the inner detector and muon sys-
tem can help us observe new force carriers coupled to
muons, which are usually not detected. In the FASER
experiment, the high-resolution of the tungsten-emulsion
detector is used to measure the muon’s trajectories and
energies.

B. Data set

The dataset [40], produced with MADGRAPH5 sim-
ulations [27], is composed of samples with the following
variables: the energy E, transverse momentum pt and
pseudorapidity η of the outgoing muon and MFC, condi-
tioned on the energy of the incoming muon. The data are
made more Gaussian shaped by being preprocessed in the
following way: the energy is divided by the mean of the
incoming energy, the transverse momentum is elevated
to the power of 0.1 [41], and everything is standardized

to zero mean and unit variance. The purpose of the pre-
processing is to ease the training, and the preprocessing
has shown improvement over the generation of the same
events using classical GAN [42]. The dataset is composed
of 10 240 distinct events, and it is split into training and
testing sets of equal size.

III. MODELS

A. Quantum circuit Born machine

A Born machine represents a probability distribution
as a quantum pure state and can generate samples via
projective measurements. The Born machine outputs bi-
nary strings, which can be interpreted as a sample from
the generated discrete probability distribution. Similar
to a classification task, the target distribution is dis-
cretized into 2N bins, which are associated with different
binary strings of size N . The quantum state can take the
form of a quantum circuit [13] or a tensor network [43],

acting on some initial state, e.g., |0〉⊗N . Delgado and
Hamilton [38] numerically demonstrated that the initial
state has only a negligible impact on the training, rea-
son why this simple, physic-independent state is chosen.
This paper considers quantum circuit Born machines,
where the quantum circuit U(Θ) is constructed, for con-

venience, using L repetitions of basic layers Ui(~Θi), where

Θ = {~Θ0, ..., ~ΘL} is the set of all parameters. ~Θi is a vec-
tor of trainable parameters for the specific layer i which
needs to be trained to match all amplitudes for the de-
sired N -qubit registers to find the corresponding state.
These building blocks are chosen as a hardware-efficient
ansatz [15], which can be run on current quantum chips
with minimal overhead. An example constructed with
Ry(θ) = exp(−iθσy/2) and Rx(θ) = exp(−iθσx/2) sin-
gle-qubit rotations, where θ ∈ [0, 2π), are trainable pa-
rameters, and controlled NOT (CNOT) interaction be-
tween two qubits with linear connectivity is shown in
Fig. 1. Here, σk (k = x, y, z) correspond to Pauli matri-
ces

σx =

(
0 1
1 0

)
, (1)

σy =

(
0 −i
i 0

)
, (2)

σz =

(
1 0
0 −1

)
. (3)

A Ry(θ) rotation is always added before the measure-
ments, which can be interpreted as optimizing the ob-
servable which is measured. Thus, the final unitary can
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Figure 1: Ansatz constructed with Ry(θ) and Rx(θ)
single-qubit rotation and CNOT interactions with a

linear connectivity.

be written as

U(Θ) =

 N⊗
j=1

Rjy((~ΘL)j)

 0∏
i=L−1

Ui(~Θi) (4)

=

 N⊗
j=1

Rjy((~ΘL)j)

 0∏
i=L−1

[(
N−1∏
k=1

CXk,k+1

)
· (5)

×

 N⊗
j=1

Rjx((~Θi)N+j)

 N⊗
j=1

Rjy((~Θi)j)

] (6)

where Rjy(θ) (Rjy(θ)) is a rotation of the jth qubit around
the y(x) axis with angle θ [44] and CXk,j is a CNOT [44]
gate between qubits k and j.

B. Correlated features

A simple way to extend the above-defined QCBM to
generate D correlated features is to use different registers
(qA, qB, qC, etc) for each of them, as proposed in Ref.
[37]. We will therefore associate each feature with a quan-
tum register of size n, where the total number of qubits
needed is Dn. In this scenario, a fixed unitary C entan-

gles the registers while local operators Ui,j(~Θi,j) learn the
individual distributions, as shown in Fig. 2. The index
i refers to the layer, and j refers to the register. While
the local operators are trainable, the correlation gates C
do not contain any free parameters. This ensures that
the number of parameters is kept to a minimum, con-
sidering that rotations are already included in the local
operators. The operator C is built with the following
two-qubit block

(H ⊗H) · CXqAi,qBi , (7)

which is used to entangle the ith qubit of the qA and qB
register. Here, H refers to the Hadamard gate [44]. We
consider different variations of this setup:

(1) We vary the registers are entangled together, e.g.
in a linear way, where each register is connected to
the next one, or in a full way, where every register
is connected to all the others.

Figure 2: QCBM for a multivariate probability
distribution. The fixed C gates create entanglement

between the registers while the trainable U(~Θi,j) block
learns the distributions.

Figure 3: Correlation gates C between two quantum
registers qA and qB, with n qubits each.

(2) We vary the number of qubits in each register
which are acted upon, e.g., only the first pair (de-
noted by j = 1), or all of them (j = n, denoted by
”all”). More precisely, the qAi qubit is connected
to the qBi one for i ∈ {1, ..., j}.

(3) Finally, we can choose the block to be

(H ⊗ 1) · CXqAi,qBi , (8)

which constructs a Bell state, when two registers
are involved or,

(H ⊗ 1⊗ 1) · CXqAi,qBiCXqBi,qCi , (9)

which constructs a Greenberger-Horne-Zeilinger
state when there are three registers. This choice
will be denoted by the label ”Bell”.

This gives eight possibilities in total, and they were all
tested for the considered use case. A comparison will be
shown in Sec. V C. However, we can already mention
that an easier choice, such as (linear, 1) or (linear, 1,
Bell), with a reduced connectivity and number of gates
usually leads to higher performance, in terms of both the
marginal distribution and correlations. Moreover, while
the more expensive option (linear, all) achieves a smaller
loss on the simulator, it failed on the hardware since the
execution time exceeded the coherence time of the device,
producing uniform distributions from maximally mixed
states. We therefore advocate for the use of the mini-
mal (linear, 1) block, which can be constructed using the
circuit depicted in Fig. 3.
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Figure 4: Mapping of the multidimensional QCBM onto
a 27-qubit IBM quantum chip. The different colors refer

to different registers and the ordering follows the
convention of QISKIT.

Moreover, it is possible, using the circuit in Fig. 1 for

Ui,j(~Θi,j), for all i and j, to map the multivariate Born
machine from Fig. 2, with the (linear, 1) choice to an
IBM Quantum chip without using any SWAP gates. This
is due to the linear connectivity of all the components and
the T topology of the device. Fig. 4 shows a possible way
to do so onto a 27-qubit architecture using three registers
(qA in red, qB in blue, and qC in green) with n = 3
qubits each. The elimination of SWAP gates diminishes
the number of errors made on the quantum devices by
reducing the number of two-qubit gates and depth.

C. Conditional Born machine

Conditional generative models, such as conditional
generative adversarial networks [45] produce samples x
according to some conditions y. This task is more chal-
lenging since p(x|y) has to be captured, instead of only
p(x), where p(x) is the probability of event x happening.
The flexibility of conditional generative models compared
to MC simulations is advantageous in terms of the com-
putational and time resources needed to generate com-
plex events. For instance, in the MC simulations used
in this work, the initial energy of the incoming muon
has to be fixed, while it is variable in ML-based tech-
niques. This is a strong argument in favor of machine
learning, both classical and quantum, for data genera-
tion in HEP. Hence, while the MC computations have
to be performed for all the different values of the condi-
tioning variable, machine learning models can learn from
a reduced training set, and interpolate, or even extrapo-
late, considerably reducing the time consumption needed
for MC simulations.

Condition y in MFC events is the energy Ein of the
incoming muon. Different experimental values for Ein

are considered, ranging from 50 to 200 GeV in steps of
25 GeV. The conditional QCBM’s goal is to generate
the correct distributions when given access to the incom-
ing muon’s energy. In practice, y = Ein is first scaled
between [0,1], is transformed with the function arcsine,

Figure 5: Conditional Born machine. The data
dependent block (blue) acts as a feature map while the

trainable gates (red) learn the distribution.

as used in [7], and is then encoded into the QCBM via
repeated y rotations on all qubits, as shown in Fig. 5.
The preprocessing ensures that the data are in the right
range to be interpreted as an angle. Overall, the model

consists of a feature map Φ( ~X) which encodes the data
~X and trainable gates that learn the probability distri-
bution, and can be written as

U( ~X,Θ) = U(Θ)Φ( ~X), (10)

with U(Θ) as in Eq. 4, Φ( ~X) being the data-encoding
feature map

Φ( ~X) =

N⊗
j=1

Ry( ~Xj) (11)

and

~Xi = arcsin (minmax[Ein, 0, 1)]. (12)

Here, minmax(Y, a, b) scales the data set Y between the
values a and b.

More complex feature maps [10], and data reuploading
[46] strategies were tested but did not show any improve-
ments.

IV. TRAINING STRATEGY

A. Optimization

The QCBM is trained using a two-sample test [47],
with a Gaussian kernel

K(x, y) = exp(− (x− y)2

2σ
), (13)

by comparing the distance between two samples x and
y in the kernel feature space. Concretely, the maximum
mean discrepancy (MMD) [47] loss function

L = E[K(x, y)]
x∼pθ,y∼pθ

− 2E[K(x, y)]
x∼pθ,y∼π

+ E[K(x, y)]
x∼π,y∼π

(14)

is used, with bandwidth

σ ∈ [0.01, 0.1, 1, 10, 100]. (15)
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In this way, the differences of all the moments between
the target and model probability distributions are effi-
ciently compared at different scales. The advantages of
the MMD include its metric properties and the training
stability it provides, making it a suitable option in the
NISQ era.

The gradient can be computed [13] using the parame-
ter-shift rule [48] as

∂L
∂θi

= E[K(x, y)]
x∼pθ+ ,y∼pθ

− E[K(x, y)]
x∼pθ− ,y∼pθ

− E[K(x, y)]
x∼pθ+ ,y∼π

+ E[K(x, y)]
x∼pθ− ,y∼π

, (16)

where pθ± are QCBMs with parameters θ± = (θ±π/2)êi
with êi being the ith unit basis vector in the parameter
space, i.e. (êi)j = δij .

Alternatively, the simultaneous perturbation stochas-
tic approximation (SPSA) [49] algorithm is also con-
sidered to optimize the QCBM in a gradient-free fash-
ion. SPSA efficiently approximates the gradient with two
sampling steps by perturbing the parameters in all direc-
tions simultaneously. While the convergence is slower
than using the exact gradient, fewer circuit evaluations
are needed for each epoch. Moreover, the stochastic na-
ture of SPSA makes it more resilient to hardware and
statistical noise. It was observed during the simulations
that the gradient-based algorithm outperforms SPSA, as
SPSA sometimes gets trapped in local minima. However
the gradient-based algorithm is more resource intensive
than SPSA, and in this regime, SPSA is often preferred
as it is better suited for quantum hardware.

Therefore, a mixed training scheme is used, where the
models are first trained on (noisy) simulators using the
adaptive moment estimator (ADAM) optimizer [50] and
then fine-tuned for a few epochs on quantum hardware
using SPSA. A readout-error-mitigation scheme [51] is
used on the measurements. Details about the implemen-
tation, training, and resources can be found in the Ap-
pendix.

B. Classical baseline

Classical generative models trained using the MMD
loss function (GMMD models) [52, 53] are used as a base-
line. They are trained on continuous data since the per-
formance is usually higher than for discrete samples. The
considered model is a simple fully connected neural net-
work with only a few thousand parameters. It is highly
probable that higher-performing models can be designed
with some care. For instance, [42] shows a solution to
the same problem using GAN. The goal of the classical
baseline at this stage is to give an indication of the cur-
rent level of deployability of quantum machine learning
models and not to predict quantum advantage.

V. RESULTS

A. Experimental device

The quantum devices (IBMQ Montreal and IBMQ
Mumbai [54]) used in this work consist of two 27-fixed-
frequency transmon qubits, with fundamental transition
frequencies of approximately 5 GHz and anharmonicities
of −340 MHz. Their topology is displayed in Fig. 4. Mi-
crowave pulses are used for single-qubit gates and cross-
resonance interaction [55] is used for two-qubit gates.
The experiments took place over 3 hours each, without
intermediate calibration. The median qubit lifetime T1

of the qubits are 121 and 129 µs, the median coherence
time T2 are 90 and 135 µs and the median readout er-
rors are 0.029 and 0.021 for the two devices, respectively.
The qubits, which are used in the experiments, are chosen
such that the total CNOT and readout error are mini-
mized. The CNOT error varies between 0.006 and 0.02,
depending on the specific connection.

B. One dimensional distribution

As a first demonstration, the QCBM is trained on a
one-dimensional distribution: the energy of the outgo-
ing muon discretized on 24 = 16 bins. The QCBM is
built with one repetition of RY (θ) and RX(θ) gates on
all qubits and (Rzz)i,j(θ) = exp

{
(−iθσiz ⊗ σjz)

}
interac-

tion on qubit i and j, using a full entanglement scheme.
The unitary can thus be written as

U(Θ) =

(
4⊗
i=1

Ry((~Θ1)i)

)
(17)

3∏
i=1

4∏
j=i+1

(Rzz)i,j((~Θ0)(8+4∗i+j) (18)

×

(
4⊗
i=1

Rx((~Θ0)4+i)Ry((~Θ0)i)

)
, (19)

and has 18 parameters. This particular structure has
been found to be best suited for the current situation
via trial and error. In particular, empirical evidence sug-
gests that this circuit is better suited than the one pro-
posed in Fig. 1. The small number of two-qubit gates
enables the use of real quantum hardware without se-
vere complications due to the noise. Results obtained
with an ideal simulator, noisy simulator, superconduct-
ing circuits (IBMQ Montreal) and classical GMMD are
shown in Fig. 6. The histograms display the number of
generated events and the ratios with the data set as a
function of energy (GeV), with error bars corresponding
to one standard deviation from 10 sampling processes.
The GMMD is chosen to be a neural network with four
hidden layers of size [64, 128, 64, 16], each with a sigmoid
activation function, and a latent space of dimension 15.
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Figure 6: The outgoing muon’s energy at 50 GeV.
Comparison of QCBMs run on a perfect simulator
(dashed cyan), noisy simulator (orange) and IBMQ
Montreal (dashed pink) with the classical GMMD

(blue).

Backend TV
Simulator 0.055

Noisy simulator 0.043
IBMQ Montreal 0.074

GMMD 0.028

Table I: Total variance (TV) for the one dimensional
distribution on different backends.

The total variance (TV) ∈ [0, 1] with sample set Ω,

VT (p, π) =
1

2

∑
x∈Ω

|p(x)− π(x)| (20)

is used as a comparison metric and results are shown in
Table I.

Although slightly outperformed by the GMMD, the
QCBM can still be competitive even with its small num-
ber of parameters. The noise does not negatively con-
tribute to the performance, as emphasized by the noisy

Figure 7: Validation MMD loss values during training
for the eight different architecture choices for the
correlation block considered in the present paper.

simulations and quantum hardware results.

C. Multivariate distribution

As a next step, we consider a multivariate distribution,
namely, the energy, transverse momentum, and pseudo-
rapidity of the outgoing muon with an incoming energy
of 125 GeV, using 23 = 8 bins. The QCBM is designed

with four repetitions of entangling C and a local Ui(~Θi,j)
block, as seen in Fig. 2. The former creates an entangling
state, while the latter consists of Ry(θ) and CNOT in-
teraction with linear connectivity. The model therefore
has 45 parameters. We first assess the performance of
the different choices for the correlation block described
in Sec. III B by showing the validation MMD loss values
during the training in Fig. 7. We observe that the (lin-
ear, 1) and (linear, all) blocks perform similarly and are
the best choices for the present task. It is not surprising
that the best results are obtained with the long-range in-
teraction provided by (linear, all), as this outcome was
also reported in [12, 37]. However, the performance ob-
tained on the quantum hardware is improved by using
the (linear, 1) block since it contains fewer CNOT gates.
We will therefore choose this architecture for the rest of
the paper.

The results for the simulator, noisy simulator, IBMQ
Mumbai, and GMMD are shown in Fig. 8 and the to-
tal variance for the marginal distributions are presented
in Table II. The GMMD is constructed similarly to that
above but with three hidden layers of size [128, 256, 128].
Even if the GMMD achieves the best accuracy, the
QCBM is still competitive despite its small number of
learned parameters or the presence of noise.

An important factor for the performance of generative
models is their ability to learn the correlations between
the variables, which is not reflected in the total variance.
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Figure 8: (a) The outgoing muon’s energy, (b) transverse momentum and (c) pseudorapidity at 125 GeV, generated
by the multidimensional QCBM on a perfect simulator (cyan), noisy simulator (orange) and IBMQ Mumbai (dashed

pink) compared to a classical GMMD (dashed blue).

Backend VT (E) VT (pt) VT (η)
Simulator 0.055 0.05 0.052

Noisy simulator 0.075 0.12 0.06
IBMQ Mumbai 0.078 0.097 0.13

GMMD 0.036 0.017 0.063

Table II: Total variance for the individual multivariate
distributions on different backends.

E pt η

E - 0.43 0.89

pt 0.43 - 0.61

η 0.89 0.61 -

Table III: MC correlations (ground truth)

To this point, the correlations in the target dataset are
compared to those in the generated datasets. The corre-
lation matrices are computed with the Pearson product-
moment methods

Rij =
Cij√
Cii · Cjj

, (21)

where C is the covariance matrix. The correlations in
the target dataset (ground truth) are shown in Table III
and those for the generated samples are in Table IV.

We observe that the QCBMs trained on the different
backends are able to capture the correct correlations,
even if the classical GMMD is better. It is notewor-

thy that the samples generated by the quantum chip are
closer to the ground truth than the simulated ones, sug-
gesting that generative modeling is a promising task for
NISQ devices.

D. Conditional distribution

Finally, we consider conditional QCBM for the gen-
eration of MC events conditioned on the initial muon’s
energy, which is encoded in the QCBM via parametrized-
rotations. The QCBM, as outlined in Fig. 5 contains

four repetitions of Ui(~Θi), with Ry(θ) and Rx(θ) rota-
tions (with different parameters) and CNOT interaction
in a linear fashion as depicted in Fig. 1, while the GMMD
has two hidden layers of size [8, 8]. The thus QCBM con-
tains 27 trainable parameters. The training is performed
on the whole dataset except at 125 GeV, which is left to
test the interpolation capabilities of the models. Results
are shown in Fig. 9, and the values of the total vari-
ance are reported in Table V. All models achieve good
performance for the interpolation. The results on the
quantum hardware could be slightly improved for some
histogram binned values. However, the performance is
similar on training and testing energy bins, suggesting
that the QCBM can interpolate but is strongly affected
by the noise.
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E pt η
sim noisy IBMQ GMMD sim. noisy IBMQ GMMD sim. noisy IBMQ GMMD

E - 0.6 0.3 0.29 0.44 0.9 0.87 0.88 0.91
pt 0.6 0.3 0.29 0.44 - 0.79 0.58 0.6 0.61
η 0.9 0.87 0.88 0.91 0.79 0.58 0.6 0.61 -

Table IV: Correlation in the generated samples obtained on the simulator (light blue), noisy simulator (orange),
IBMQ Mumbai (pink) and with the classical GMMD (dark blue).

Figure 9: The outgoing muon’s energy with an initial energy of (a) 100 GeV (train), (b) 150 GeV (train), and (c)
125 GeV (test) generated by the QCBM on a perfect simulator (cyan), noisy simulator (orange), and IBMQ

Mumbai (dashed pink) compared to a classical GMMD (dashed blue). The models are tested on samples with an
energy of 125 GeV while they were trained on samples with the remaining energies.

Backend VT (100) VT (150) VT (125)
Simulator 0.033 0.016 0.033

Noisy simulator 0.067 0.046 0.035
IBMQ Mumbai 0.15 0.13 0.094

GMMD 0.016 0.032 0.034

Table V: Total variance for the conditional distribution
on different backends.

VI. DISCUSSION

The results presented in the Sec. V suggest that
QCBMs can reproduce the marginal distribution, as well
as the correlations, from MC simulations. Even if a
higher performance can easily be obtained with classi-
cal neural networks, it is important to underline that
QCBMs generally operate with very few parameters for
similar performance. This suggests that QCBMs are
more expressive than classical neural networks, as out-
lined by Abbas et al. [56], and outperform them in the
under-parametrized regime. It remains an open question
whether QCBMs enjoy a higher performance in the over-

parameterized regime, as is the case for classical models
[57]. We note that this question was already explored for
quantum neural networks by Larocca et al. [58].

Moreover, the presence of noise does not seem to be
an obstacle to the training of QCBMs. It is noteworthy
that the results obtained on quantum hardware are close
to that obtained on the simulator, which suggests suffi-
cient device quality for this task and an ability to deal
with incoherent noise. The hardware results are slightly
worse in the conditional case which can be explained by
the reduced number of epochs performed on the quan-
tum hardware. The loop over the training energy bins
increases the resources needed for one epoch, and thus
reduces the number of epochs performed.

These observations suggest that the noise is assimilated
during the training, underlining the importance of using
actual quantum hardware. This supports the findings of
Borras et al. [59], which empirically found that quantum
generative adversarial networks can be efficiently trained
on quantum hardware if the readout noise is smaller than
0.1. Thus, QCBMs seem to be an appealing application
for NISQ devices.

Barren plateaus (BP) are large portions of the train-
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ing landscape where the loss function’s gradient variance
vanishes. As shown in [60], BPs appear exponentially fast
in the depth and number of qubits for generic quantum
circuits, which makes the training of large-scale quan-
tum variational algorithms generally difficult. Solutions
to this issue, such as quantum convolutional neural net-
works [9] and local loss functions [61] are not applicable
in this case since measurements on all qubits are needed.

However, BPs have not been observed in this work,
and were not reported in similar studies [37, 38] either.
This can be explained to some extent by the relative shal-
lowness of the circuits used. Nevertheless, difficulties are
observed durings training on hardware and noisy sim-
ulators, which could be an effect of noise-induced BPs
[62]. A more significant number of epochs was needed
to mitigate this effect. Increasing the number of qubits
to five or six, for the one-dimensional case, causes the
ratio between the generated and target samples for each
bin to deteriorate, even if the loss function converged
after a hundred epochs. The same problem appeared
when increasing the number of features in the multivari-
ate case and mixing multiple features with the condition-
ing. Since the gradient never vanished at the beginning
of the training, BPs are probably not the most critical
issue, on the other hand, the MMD may not be the most
suitable loss function for large-scale QCBMs.

Alternative training strategies were proposed in [11,
12], with optimal transport and an adversarial training
strategy, respectively. Hence, empirical evidence suggests
that the strong theoretical properties of the MMD loss
function are not met in practice, as outlined by some
benchmarks [63]. Hence, the performances of GMMD
and GAN are similar for simple problems but the latter
is superior for complex tasks. Li et al. [64] proposed an
adversarial strategy to optimize the kernel as an efficient
way to improve the performance of GMMD models.

VII. CONCLUSION

The present paper presented the application and fur-
ther development of a quantum circuit Born machine to
generate Monte Carlo events in HEP, specifically muon
force carriers. An efficient way to generate multivariate
distributions, requiring only linear connectivity and thus
being suitable for NISQ devices, was proposed. Addition-
ally, the present paper took a step towards generating
conditional probability distributions with quantum cir-
cuit Born machines. Numerical evidence demonstrated
that QCBMs can efficiently generate joint and condi-
tional distributions with the correct correlations. Finally,
the experiments were run successfully on quantum hard-
ware, hinting that QML algorithms can mitigate the ef-
fect of the noise during the training. Quantum generative
models are consequently appealing for NISQ devices since
they can manage noisy qubits without the need of for ex-
pensive error-mitigation techniques. QCBMs also have
the advantage of needing a small number of parameters
while still being competitive.

While having strong potential in generative modeling,
QCBMs still need some improvement to handle a more
refined binning and multivariate distribution of higher
dimensions. Additionally, it would be interesting to con-
sider conditional distributions which are more sensitive
to the conditioning variable, and they will be the focus
of future work.
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Appendix A: Implementation

The noiseless simulations are performed with PENNY-
LANE [65] powered by JAX [66], which enables an effi-
cient gradient computation via vectorization and just-in-
time compilation. The noisy simulations are performed
using a fake backend tuned to the real quantum hard-
ware, provided by QISKIT [67]. The fake backend has the
same characteristics on average as the real backend de-
scribed in Sec. V A. The training is performed in batches
composed of 512 events each, and one epoch is composed
of 10 batches. The learning rate is initially set to 0.01
and is halved every 20 epochs. The resources needed to

produce the presented results are presented in Table VI,
which shows the number of parameters, the time needed
for a forward pass and a backward pass, and the number
of epochs until convergence for all the quantum models
trained on the simulator. Each epoch is composed of
10 batches, except the conditional model which has 10
batches per training energy bin (i.e., six). Each batch
contained 512 samples. Simulations were run on a sin-
gle CPU on the University of Geneva’s Yggdrasil HPC
cluster.

Model Param. Forward Backward Epochs
pass (s) pass (s)

One-dimensional 18 1.2 3.9 70
Multivariate 45 1.9 9.4 100
Conditional 27 1.5 4.5 30

Table VI: Number of parameters, time needed for a
forward and backward pass and number of epochs until
convergence for the three quantum models trained on a

simulator.

http://github.com/google/jax
http://github.com/google/jax
http://github.com/google/jax
http://dx.doi.org/10.5281/zenodo.6924865
https://pennylane.ai/qml/demos/tutorial_jax_transformations.html
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