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Abstract—Quantum Neural Networks (QNNs) are suggested
as one of the quantum algorithms which can be efficiently
simulated with a low depth on near-term quantum hardware
in the presence of noises. However, their performance highly
relies on choosing the most suitable architecture of Variational
Quantum Algorithms (VQAs), and the problem-agnostic models
often suffer issues regarding trainability and generalization
power. As a solution, the most recent works explore Geometric
Quantum Machine Learning (GQML) using QNNs equivariant
with respect to the underlying symmetry of the dataset. GQML
adds an inductive bias to the model by incorporating the prior
knowledge on the given dataset and leads to enhancing the
optimization performance while constraining the search space.
This work proposes equivariant Quantum Convolutional Neural
Networks (EquivQCNNs) for image classification under planar
p4m symmetry, including reflectional and 90◦ rotational symme-
try. We present the results tested in different use cases, such as
phase detection of the 2D Ising model and classification of the
extended MNIST dataset, and compare them with those obtained
with the non-equivariant model, proving that the equivariance
fosters better generalization of the model.

Index Terms—Quantum Machine Learning, Geometric Quan-
tum Machine Learning, Equivariance, Image classification, Image
processing

I. INTRODUCTION

During the last few years, Quantum Machine Learning
(QML) has witnessed remarkable progress from diverse re-
search perspectives as a promising application for the practical
use of quantum computers [1]–[3]. In particular, Quantum
Neural Networks (QNNs) are suggested as the most general
and fundamental formalism to solve a plethora of problems
while the architecture is completely agnostic to the given
problem. They are often expected to improve existing machine
learning (ML) techniques in terms of training performance [2],
[4], convergence rate [5], [6], and generalization power [7]–
[9].

However, they often suffer from issues due to complex loss
landscapes, which are often non-convex and lead to many poor
local minima [10]–[12]. In an effort to solve these issues, the
field of Geometric Quantum Machine Learning (GQML) [13]–
[19] is currently emerging, inspired by the classical Geometric
Deep Learning (GDL) [20]–[22].

The main idea of GQML is to add sharp inductive bias [23]
into the training model by incorporating prior knowledge on

the dataset [18], [19]. In practice, GQML aims to construct
a parameterized QNN, which is equivariant under the action
of the symmetry group associated with the input dataset,
so that the same action is applied to the output of the
QNN. Previous studies have heavily explored GQML both in
terms of theories and applications, showing that GQML helps
mitigate the issues often encountered in QML [19]. However,
most studies still focus on the permutation symmetric group,
Sn [13], [15], [18], Z2 ⊗ Z2 symmetry applied in small toy
applications [14], or a single symmetry element in the case of
image classification [24].

We extend the study on GQML in the context of image
classification by taking into account the planar wallpaper
symmetry group, p4m, which includes the reflection and the
90◦ rotation. The p4m symmetry group is the most common
symmetry group observed in image datasets, which are already
treated in classical GDL via Group Equivariant Convolutional
Networks (GCNN) [21], [25]. Although symmetry in images
is considered to hinder neural network training in general,
there exist applications where the symmetry has ponderable
importance, such as Earth Observation [26]–[29], medical
images [30], symmetry-related physics datasets [31], etc.

In this work, we introduce the p4m-Equivariant Quantum
Convolutional Neural Network (EquivQCNN) for image clas-
sification. The results clearly prove that the equivariant neural
network has the advantage in terms of generalization power,
in particular, while using only a small number of training
samples. Moreover, we show that the presence of small noise
in the EquivQCNN training helps to classify the symmetric
images better. Our study ultimately paves the way for GQML
to tackle realistic image classification tasks, improving training
performance.

This paper is structured as follows. First of all, we will
briefly summarize in Section II the theoretical backgrounds
required to understand GQML. Then, in Section III, we
introduce the architecture of Equivariant Quantum Convolu-
tional Neural Network (EquivQCNN) for the planar wallpaper
symmetry group p4m in the context of image classification.
Section IV present our first result for EquivQCNN applied
on reflectional and rotational symmetric images and prove its
generalization power compared to the non-equivariant archi-
tecture. We finally conclude in Section V and propose a future
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research direction.

II. PRELIMINARIES

This section summarizes the theoretical background on
group symmetry and equivariance required to construct a
GQML architecture for supervised learning. Consider a clas-
sical data space X and a label space Y . Each data sample
x ∈ X is associated with a label ℓ ∈ Y with the underlying
function f : X → Y . The supervised learning aims to find yθ,
which is as close as possible to the ground truth f with the
trained parameters θ.

In the case of QML, we construct a quantum feature
map ψ : X → H, which embeds the classical data into a
quantum state in the Hilbert space H. The input quantum
state |ψ(x)⟩ ∈ H is then transformed via QNN, taking the
most general form of a Variational Quantum Circuits (VQCs)
U(θ) which is parameterized by the rotation angles θ. The
final prediction of the QNN for the input feature x is given
as an expectation value of the observable O :

yθ(x) = ⟨ψ(x)| U†(θ)OU(θ) |ψ(x)⟩ . (1)

In general, QNN architecture is completely agnostic to the
underlying symmetry of X . GQML aims to incorporate the
symmetry inherent to the dataset with the QNN architecture
so that the final prediction is invariant after the action of the
symmetry group element on the original input feature.

Let us formalize it in a more concrete way. Consider a
symmetry group G that acts on the data space X . We say
the training model is G-invariant if :

yθ(g[x]) = yθ(x),∀x ∈ X ,∀g ∈ G. (2)

In order to construct G-invariant model, we require three
components: equivariant data embedding, equivariant QNN
and invariant measurement [14].

First of all, we say that the data embedding is G-equivariant
if the symmetry group element g ∈ G applied on the data
x ∈ R induces a unitary quantum action Vs[g] in the level of
quantum states :

|ψ(g[x])⟩ = Vs[g] |ψ(x)⟩ . (3)

We call Vs the induced representation of the embedding
ψ(x) [14].

We also need to construct a trainable quantum circuit ansatz,
parameterized by angles θ, which is equivariant with respect
to the symmetry group G. For simplicity, we consider only
the gates generated by a fixed generator G ∈ G :

RG(θ) = exp(−iθG), θ ∈ R. (4)

where G is a fixed gateset. For a symmetry group G and its
representation Vs, the operator RG is said to be G-equivariant
if and only if [14], [17]:

[RG(θ), Vs[g]] = 0,∀g ∈ G,∀θ ∈ R (5)

or equivalently,

[G,Vs[g]] = 0,∀g ∈ G. (6)

The definition of equivariance can also be extended to QNNs.
We call that a QNN, Uθ, is G-equivariant if and only if it
consists of equivariant quantum operators, i.e. Uθ commutes
with all the components in the symmetric group G.

There exist several methods to construct the equivariant
gateset [19], but in this paper, we will focus on the twirling
method, which is the most practical approach for small sym-
metry groups [32]. Consider an arbitrary generator X . Then,
we define a twirled operator TG as :

TG[X] =
1

|G|
∑
g∈G

Vs[g]
†XVs[g]. (7)

It corresponds to a projector of the operator X onto all sym-
metry group elements, commuting with Vs[g] for all g ∈ G.

Finally, an observable O is G-invariant, if :

Vs[g]
†OVs[g] = O, ∀g ∈ G, (8)

i.e. if O commutes with Vs[g] for all g ∈ G. By taking all three
components, the equivariance of QNN leads to the invariance
of the final prediction:

y(g[x]) = ⟨ψ(g[x])| U(θ)†OU(θ) |ψ(g[x])⟩
= ⟨ψ(x)|V †

s U(θ)†OU(θ)Vs |ψ(x)⟩
= ⟨ψ(x)| U(θ)†OU(θ) |ψ(x)⟩ = y(x) (9)

Overall, we have a trade-off between the equivariance and
the expressibility of the QNN by constraining the quantum
operators in the model based on the geometric prior of the
dataset. GQML reduces the search space for training and
brings advantages in many folds, such as trainability [18],
convergence rate [33], and generalization power [14], [18].

III. GQML FOR IMAGE CLASSIFICATION

In this section, we will introduce Equivariant Quantum
Convolutional Neural Networks (EquivQCNNs) for image
classification invariant under the p4m wallpaper symmetry
group, Gp4m , which corresponds to the planar square sym-
metry group. It consists of 8 components :

• the identity e,
• the rotation r, r2 and r3 of 90◦, 180◦, 270◦ around the

origin,
• the reflection tx and ty in the x and y axis,
• the reflection in the two diagonals.

In this paper, we will focus on six components out of them,
the rotation r and the reflection in the main axis, tx and ty .

A. Equivariant Data embedding

We will start by constructing the data embedding method for
the reflectional and rotational symmetry of images. Amplitude
encoding is one of the most fundamental methods for mapping
classical data into quantum states [34]. In general, each
pixel coordinate is associated with a computational basis by
visualizing the 2D image as a 1D vector, but this complicates
the manipulation of 2D symmetry.
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Fig. 1: Schematic diagram of the action of p4m symmetry on 2D images of size 4×4 encoded using CAA embedding method
with 2 qubits. The pixel at position (i, j) is associated with a computational basis |i⟩ |j⟩.

We propose a coordinate-aware amplitude (CAA) embed-
ding method, which facilitates finding the unitary representa-
tion of p4m symmetry group. The main idea of the CAA
embedding is that we can explicitly denote the x and y
coordinates by using the first n qubits to represent the x-
coordinate and the second n qubits for the y-coordinate of
the pixel.

Let us consider a training set X of 2-dimensional images
with N×N pixels, denoted as x = {xij} with i, j = 0, ..., N−
1, each of which is associated with a hot encoded label ℓ ∈
{0, 1} ∈ Y . The CAA embedding maps the input image x into
a quantum state |ψ(x)⟩ ∈ H as follows:

|ψ(x)⟩ =
N−1∑
i=0

N−1∑
j=0

xij |i⟩ |j⟩ (10)

where N = 2n. For simplicity, let us denote q1:n the first n-
qubits for x-coordinates and qn+1:2n the second n-qubits for
y-coordinates.

From the CAA embedding formulation, it is straightforward
to find the induced representation of p4m group elements.
Fig. 1 visualizes CAA embedding of 2D images and the action
of the symmetry elements on the computational basis states.
Let us denote Vx and Vy the induced representation of the
reflections, tx and ty respectively, and Vr for rotation of 90◦,
r, which are defined as follows :

Vx = X⊗n ⊗ I⊗n = X1:n, (11)

Vy = I⊗n ⊗X⊗n = Xn+1:2n, (12)

Vr = (X⊗n ⊗ I⊗n)⊗n−1
i=0 SWAPi,i+n = VxV

′
r , (13)

with V ′r = ⊗n−1
i=0 SWAPi,i+n Therefore, the quantum

gates, which are equivariant with respect to p4m symmetry,
should commute with all the induced representation, Vp4m =
{Vx, Vy, Vr} :

U ∈ comm{Vx, Vy, Vr} = comm{Vx, Vy, V ′
r}

= comm{X1:n, Xn:2n,⊗n−1
i=0 SWAPi,i+n}, (14)

where comm denotes the commutator of the unitary operators.

B. Equivariant Quantum Convolutional Neural Networks

First proposed by Iris Cong, et al. [35], Quantum Convo-
lutional Neural Networks (QCNNs) is the quantum analogue
of classical Convolutional Neural Networks (CNNs). QCNNs
have exhibited success in different tasks, including quantum
many-body problems [35], phase detection [8], and image
classification [36], taking advantage of avoiding the barren
plateaus with shallow circuit depth [11].

QCNN consists of two components, convolutional filters,
which are k-body local quantum gates for k < n, and the
pooling layers, to reduce the two qubit states into one qubit
state. In most of the cases, we have k = 2 for convolutional
filters, but in this paper, we will also introduce the case
with k > 2 to maintain the equivariance. Especially QCNN
maintains the translational invariance of input data by sharing
identical parameters between the filters inside each layer.

Following the definition of equivariance and the method
presented in Section II, we construct the equivariant ansatz
of the convolutional filters for Gp4m. To start with, we can
easily find out that the architecture of QCNN respects the
equivariance with respect to V ′

r as we repeat the same gate
with the same parameter on qubit i and i + n if we have an
even n.

The ansatz symmetrization for the other symmetries requires
more insights. We will consider the generator gateset, which
only consists of Pauli strings up to 2-body local operation :

G = {X,Y, Z, Y1Y2, Z1Z2}. (15)

For a single qubit gate, it is trivial to notice that only Pauli X
gates commute with Vx, Vy , while for k-qubit gates for k > 1,
we need to explore two cases separately.

1) G constrained to q1:n OR qn+1:2n

Considering only 2-body quantum gates, finding U ∈
comm(X1:n, Xn:2n) can be simplified into finding U ∈
comm(X1X2). We can easily find out that both Y1Y2
and Z1Z2 commute with X1X2 applied on two qubits.



(a) EquivQCNN (b) Appr-EquivQCNN

Fig. 2: A Schematic diagram of (a) EquivQCNN and (b) Appr-EquivQCNN for an example of 8 qubits to classify image of
size 16 × 16. They consist of U2 (yellow rectangle) and U4 (blue rectangle) convolutional filters (c.f. Fig. 3), followed by
pooling layers (green circle). Both models contain a preliminary scanning phase, where U2 acts on q1:n and qn+1:2n separately.
EquivQCNN then consists of U4 ansatz, while Appr-EquivQCNN is subject to a small noise by connecting q1:n and qn+1:2n

with U2 gate.

Indeed, using the Twirling method, we have :

TX1X2
(Y1Y2) =

1

2

(
Y1Y2 + (X1X2)

†(Y1Y2)(X1X2)
)

=
1

2
(Y1Y2 +X1Y1X1X2Y2X2)

=
1

2
(Y1Y2 + (−Y1)(−Y2)).

= Y1Y2. (16)

Similarly, we can show that Z1Z2 is the equivariant
operator with respect to X1X2. Thus, we obtain the
equivariant generator gateset :

Gs,1 = {Y1Y2, Z1Z2}. (17)

2) G applied on both q1:n AND qn+1:2n

Unlike the first case, where the Pauli X gate in Vx and
Vy acts equally on two qubits with X⊗X , the weight of
Pauli gates is unbiased in this case. We can easily notice
that Gs,1 acting on qn and qn+1 do not commute with
Vx and Vy , as :

[X1 ⊗ I2, Y1Y2] = −[Y1Y2, X1 ⊗ I2]. (18)

Indeed, in order to construct an equivariant operator, we
need an even number of Pauli Y or Pauli Z gates applied
on both q1: n and qn+1: 2n [19]. Therefore, the smallest
equivariant quantum gates are :

Gs,2 = {PσPσPσ′Pσ′ |Pσ,σ′ ∈ {X,Y, Z}} (19)

By exponentiating the equivariant generators found above, we
can construct the convolutional filter ansatz, which is equivari-
ant with respect to Vp4m. Fig. 3 summarizes the equivariant
two-qubit convolutional filter ansatz, U2 and the four-qubit
ansatz, U4. Using the U2 and U4, we propose two QCNN
models, Equivariant QCNN (EquivQCNN) and Approximately
Equivariant QCNN (Appr-EquivQCNN), as shown in Fig. 2. In
both cases, we first apply the two-qubit convolutional filters on
q1:n, and qn+1:2n separately, without connecting them, which
can be considered as the preliminary scanning phase. Then,
in EquivQCNN, U4 ansatz is used as the convolutional filter

:=
RX(θ1)

RY Y (θ3)

RX(θ4)

RY Y (θ6)

RX(θ2) RX(θ5)

:=

RX(θ1)

RY Y Y Y (θ3)

RX(θ2)

RX(θ1)

RX(θ2)

Fig. 3: Parameterized quantum circuits ansatz, U2 (yellow
rectangle) and U4 (blue rectangle), used the convolutional
filters equivariant with respect to p4m symmetry group.

and connects q1:n, and qn+1:2n, leading the fully equivariant
model. On the other hand, in Appr-EquivQCNN, U2 ansatz
is repeated for the learning layers acting on qn, and qn+1.
We add a limited noise to the equivariant model to increase
the expressibility by slightly breaking the symmetry. With
this noise, we aim to find a crossing point between the
expressibility and the equivariance so that it is expressible
enough to learn the training samples but, at the same time,
not excessively expressible to generalize.

C. Approximately Invariant Measurement

In this section, we propose an Approximately Invariant
Measurement, with the detailed process summarized in Fig. 4.
For simplicity, we will consider the binary classification case.

Let us call qim ∈ q1:n and qim+n ∈ qn+1:2n with im ∈
[1, .., n] the qubits which are not traced out in EquivQCNN
and measured at the end of the circuit. First, we apply an
Rz(ϕ) and a Hadamard gate on both qim and qim+n, with
ϕ also a trained parameter. Then, we measure the probability
distribution of state |0⟩ and |1⟩ on each of the qubits separately,
obtaining [p0, p1] and [p′0, p

′
1] respectively. As the other qubits

are traced out, only the two-qubit state is left at the end of



[p0, p1]

[p′0, p
′
1]

qim Rz(ϕ) H

qim+n Rz(ϕ) H

Σ [P0, P1]

Fig. 4: Approximately Invariant Measurement process. We
apply Rz(ϕ) and H gate on two qubits, qim ∈ q1:n and
qim+n ∈ qn+1:2n, and measure the probability distribution on
each qubits separately. The final label is computed by summing
up the two distributions and taking its half.

the quantum circuit. Denoting the final quantum state on the
qubit qim and qim+1 as |ψf ⟩ = r0e

iθ0 |00⟩ + r1e
iθ1 |01⟩ +

r2e
iθ2 |10⟩ + r3e

iθ3 |11⟩, the proposed measurement on qim
returns the probability distribution :

p0 =
1

2

[
r20 + r21 + 2r0r1 cos(2ϕ− θ0 + θ1)

+ r22 + r23 + 2r2r3 cos(2ϕ− θ2 + θ3)
]
, (20)

p1 =
1

2

[
r20 + r21 − 2r0r1 cos(2ϕ− θ0 + θ1)

+ r22 + r23 − 2r2r3 cos(2ϕ− θ2 + θ3)
]
. (21)

First of all, we can easily notice that the measurement is
invariant with respect to V ′

r as we are summing up the final
measurement on qim and qim+n. Now, let us prove that it
is equivariant with a certain error rate ϵ. Similarly, let us
call [px0 , p

x
1 ] the final probability of the image reflected with

respect to the x-axis for the final state Vx |ψf ⟩ = r1e
iθ1 |00⟩+

r0e
iθ0 |01⟩+ r3e

iθ3 |10⟩+ r2e
iθ2 |11⟩ with a bit flip on qubit

qim . By performing the same computation, we can compute
the difference between p0 and px0 :

p0 − px0 = r0r1
[
cos(2ϕ− θ0 + θ1)− cos(2ϕ+ θ0 − θ1)

]
+ r2r3

[
cos(2ϕ− θ2 + θ3)− cos(2ϕ+ θ2 − θ3)

]
= sin(2ϕ)

[
r0r1 sin(θ1 − θ0) + r2r3 sin(θ3 − θ2)

]
≤ 1

2
ϵ
[
sin(θ2 − θ1) + sin(θ3 − θ2)], (22)

with ϵ = sin(2ϕ). The last inequality uses max r0r1+ r2r3 =
1
2 while taking into account the fact that r20+r

2
1+r

2
2+r

2
3 = 1.

This proves that with ϕ ≈ 0 or ϕ ≈ π
2 , we can say that the

measurement is approximately invariant with respect to Vx,
and also Vy by using the same justification. The presence of
the Rz gate loosens the constraint imposed by the symmetry
and adds an extra degree of freedom to the training. By trading
off the full invariance and expressibility, we allow exploring
larger search space for better performance.

We can generalize this measurement for L-class classifica-
tion by measuring log2 L qubits at q1:n and qn+1:2n qubits
separately and summing them up. This way of measurement
corresponds to the Softmax activation function at the end of

the neural network. Thus, we use the binary cross entropy to
calculate the training loss,

Lθ(x) = −
L∑

i=1

ℓi log pi(θ;x), (23)

where ℓ = [ℓ1, ℓ1, ..., ℓL] with ℓi ∈ {0, 1} is the one-hot
encoded target label. The state with the highest probability
will correspond to the class with which the input image is
associated.

For the following, we will consider two different types of
measurements :

1) M1 : ϕ is constrained to zero, ϕ = 0,
2) M2 : ϕ is updated during the training, ϕ ̸= 0.

IV. RESULT

(a) Ising model

(b) Extended MNIST

Fig. 5: Examples of the Ising model and the extended MNIST
image samples with size 16×16 used for binary classification.
Each row corresponds to each class.

In this section, we present our preliminary results of the
EquivQCNN training for binary image classification applied to
two different image datasets, shown on Fig. 5. The first dataset
contains the spin distribution of the 2D lattice Ising model with
16 × 16 interacting spins, simulated using Metropolis Monte
Carlo with the Hamiltonian [37]:

H = −J
∑
⟨ij⟩

sisj , (24)

where si ∈ {−1, 1} corresponds to the spin on site i, J the
interaction between two spins and ⟨ij⟩ the pairs of the nearest
neighbours. At low temperature T , the spins are ordered,
pointing all in the same direction, and as the temperature
increases, we reach the critical temperature Tc where we
observe the phase transition from an ordered phase to a



disordered phase. By taking the periodic boundary condition,
the Ising model dataset is reflectional and rotational symmetric
by construction. We aim to classify the order phase from the
disordered phase using EquivQCNN.

The second dataset is the extended MNIST dataset, which
also includes randomly reflected and rotated handwritten digit
images. In this paper, we present the results for the classifica-
tion of digits 4 and 5, downsampled into 16× 16 pixels.

We compare the performance of EquivQCNN with a non-
equivariant QCNN with a similar number of parameters, using
a convolutional filter that generates an arbitrary two-qubit
SO4 state [36]. For all the models, the initial parameters are
sampled randomly from a uniform distribution, [−0.1, 0.1].
The parameters are updated with ADAM optimizers, using
the learning rate of 0.01, β1 = 0.5 and β2 = 0.999.

Ising MNIST
nsamples 40 10240 40 10240

Non-Equiv. 77.6± 0.1 83.0± 2.0 66.7± 2.1 72.9± 0.5
Equiv. 74.2± 0.2 75.8± 0.3 77.5± 1.0 74.5± 4.7

Appr-Eq. 1 84.8± 2.2 85.4± 2.0 52.9± 0.1 72.7± 2.4
Appr-Eq. 2 86.4± 3.4 89.3± 2.9 69.7± 2.9 76.2± 1.8

TABLE I: The test accuracy at the end of the QCNN training
for Ising and extended MNIST with nsamples = 40 and 10240
training samples (best result in bold).

To prove the generalization power of the EquivQCNN, we
train the models for different training set size, Ns = 2i · 10
for i = 1, ..., 10 with the batch size Nbs = 2i to maintain
the same number of updates in each epoch. Tab. I and Fig. 6
summarize the test accuracy obtained at the end of the training
with different QCNN architectures. Note that the number of
samples in the test set is always the same regardless of the
number of training samples.

We can observe that EquivQCNN and Appr-EquivQCNN
with M2 measurement have higher test accuracy for all Ns,
especially for small Ns. In particular, in the case of the
Ising model, Appr-EquivQCNN with M2 outperforms the non-
equivariant model only using 256 times less number of training
samples. This certainly proves that the equivariance helps to
improve the generalization power as expected.

One interesting point is that EquivQCNN gives the best
result for MNIST, while Appr-EquivQCNN with M2 mea-
surement outperforms EquivQCNN for the Ising model. This
difference might be explained by the fact that the Ising model
is subject to a stricter symmetry by its construction, compared
to the extended MNIST, where the symmetry is artificially
created by random reflection and rotation. Thus, injecting
noise into the model with Appr-EquivQCNN helps training
for the Ising dataset, which is not the case for MNIST.

V. CONCLUSION

In this paper, we introduced the Equivariant QCNN for the
planar wallpaper symmetry group p4m, including reflection
and 90◦ rotation in image classification. Furthermore, our
study suggests the possibility of injection of noises into
the GQML model in order to find the best crossing point

(a) Ising

(b) Extended MNIST

Fig. 6: The test accuracy obtained at the end of QCNN
training for Ising and extended MNIST dataset with different
training sample numbers. The solid line corresponds to the
average over the five runs, and the dashed line the best
one among them. The test accuracy for EquivQCNN and
ApprEquivQCNN with M2 are always higher than the non-
equivariant QCNN, proving their generalization power.

between expressibility and equivariance. The proposed models
are tested for two different datasets, the Ising model and
the extended MNIST dataset, and compared with the non-
equivariant model. The results obtained clearly proved that
the EquivQCNN outperforms the non-equivariant one in terms
of generalization power, especially with a small training set
size. Previous studies on QML have already proven that it
has a high generalization power with a small training set
size [7]. This work demonstrated that we can further improve
the generalization thanks to the induced bias added by the
geometric prior to the dataset.

For our future research, we plan to compare the Equiv-
QCNN with the problem-agnostic model, not only in terms
of test accuracy but also in other factors, such as local ef-
fective dimension, overparameterization, barren plateaus, etc.
Ultimately, we extend the test to a more realistic use case with
a larger image size where symmetry is an essential component
for the training, such as Earth Observation images, and show
the practical advantage of EquivQCNN.
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