2107.02007v1 [cs.ET] 5 Jdul 2021

arXiv

A Serverless Cloud Integration For Quantum Computing

M. Grossi4, L. Crippa"'b, A. Aita?, G. Bartoli4, V. Sammarco?, E. Picca?, N. Said“, F. Tramonto®

and F. Mattei

4IBM Italia S.p.A., Circonvallazione Idroscalo, 20090 Segrate (MI), Italy
bUniversita di Parma, Dipartimento di Fisica, Parco Area delle Scienze, 7/A, 43124 Parma, Italy
¢IBM Client Innovation Center Srl, Via Lombardia 2/A, 20068 Peschiera Borromeo (MI), Italy

ARTICLE INFO

Keywords:

quantum computing
cloud computing
serverless

API integration
software architectures

ABSTRACT

Starting from the idea of Quantum Computing which is a concept that dates back to 80s, we come to
the present day where we can perform calculations on real quantum computers. This sudden develop-
ment of technology opens up new scenarios that quickly lead to the desire and the real possibility of
integrating this technology into current software architectures. The usage of frameworks that allow
computation to be performed directly on quantum hardware poses a series of challenges.

This document describes a an architectural framework that addresses the problems of integrating an
API exposed Quantum provider in an existing Enterprise architecture and it provides a minimum vi-
able product (MVP) solution that really merges classical quantum computers on a basic scenario with
reusable code on GitHub repository. The solution leverages a web-based frontend where user can
build and select applications/use cases and simply execute it without any further complication. Every
triggered run leverages on multiple backend options, that include a scheduler managing the queuing
mechanism to correctly schedule jobs and final results retrieval. The proposed solution uses the up-
to-date cloud native technologies (e.g. Cloud Functions, Containers, Microservices) and serves as a

general framework to develop multiple applications on the same infrastructure.

1. Introduction

The design of a software on distributed system is based
on essential pillars such as modularity, openness and reuse of
components. Typically, the application is divided into log-
ical layers allowing targeted interventions on decoupled el-
ements [5]. However, the usage of frameworks that allow
computation to be performed on quantum hardware poses a
series of challenges that will be extensively discussed in the
next section.

The goal of this project is to overcome these constraints
and develop a software architecture that can be reused as a
design pattern whenever dealing with similar problems. The
result is a system able to receive requests from the user, send
them to a quantum computer and receive back the result by
assuring the ordering and coherence of events as well as the
right format [23]. At the same time, the system must main-
tain the characteristic of openness: it would be possible to
plug and unplug new functionalities. A first attempt to cre-
ate a modular design to integrate a quantum computer API
services within a three tier application was made by some of
the authors in [24]. In that case, the problem of managing an
asynchronous service was not addressed and the focus was
on a different technology for the backend integration.

Given this requirement, we decided to adopt a configu-
ration driven architecture where it is possible to add/remove
components with minimal effort and without impacting the
other parts of the system, which are loosely decoupled [11].
On the other hand, being notified when the computation is
done has been achieved by exploiting an Event Streams queue
hosted on IBM Cloud [15], built on top of Apache Kafka [29].
The usage of a streaming application that reacts when a mes-

ORCID(S): 0000-0003-1718-1314 (M. Grossi); 0000-0003-1492-9542 (L.
Crippa); 0000-0003-4540-5004 (F. Tramonto)

sage is published on the channel, according to a publish/sub-
scribe pattern [8], is the proposed solution towards a real-
time system. However, since Event Streams promotes par-
allelism as the number of consumers listening on a specific
topic, we had to develop a user-specific assignment as a se-
cure procedure to manage multi topic requests. The article is
organized in the following: in Sec. 2 we describe the state of
the art related to the integration of a new technology like the
quantum computer in the current IT scenario, focusing on
the effective challenges and feasible solutions. In Sec.3 we
elaborate on the proposed architecture from a general per-
spective defining the data flow and what are the current re-
quirements and limitations in order to provide a possible best
practice in implementing a real quantum computing based
application. In Sec. 4 we describe in details each component
of the proposed architecture, not only from a generic techno-
logical component but also suggesting specific items avail-
able on the market. We conclude this paper with a schematic
reconstruction of the proposed solution with a remark about
motivations, the technology and the methodology adopted in
Sec. 5.

2. State of Art

The idea of Quantum Computing is a concept that dates
back to 80s, thanks to the work of Benioff [3] that developed
a model for a quantum mechanical touring machine. Few
years later, Feynman in his paper [9] proposed the idea that
to simulate quantum systems one should use a computer re-
sponding to the laws of quantum mechanics. Feynman spec-
ulated that the synergistic usage of quantum super-position
and entanglement in computation may enable the design of
computing devices showing a high degree of parallelism,
which grows with the size of the device itself, in exponential

M.Grossi, L.Crippa, A.Aita et al.

Page 1 of 8



A Serverless Cloud Integration For Quantum Computing

way. While, at first, the physical build-up of such a system
was something out of reach, the theoretical work on the field
has started and in the 90s the most famous algorithms like the
Shor’s [28] and Grover’s [12] were already available, and we
understood that quantum computers could be used for more
tasks than quantum simulations only. In 1996 Di Vincenzo
proposed a set of minimal ‘criteria’ for a physical system to
be considered a Quantum Computer [7]. The unit informa-
tion of a quantum computer is the qubit, and there are several
physical systems that can act as qubits. During late 90s, a lot
of candidates for quantum bits started to show up, and today
we can count a lot of different promising technology, some of
which are superconductors [22], ion traps [4], photonic [1],
each of which has some pros and cons at this time in terms
of coherence time, working temperature, easy-control, scal-
ability. The systems we know today are still prototypical, in
a sense that they are very good to learn and test the technol-
ogy, but they are still not able to provide a real advantage in
terms of computation time with respect to classical comput-
ers, even if a claim for a ‘Quantum Supremacy’ proof has
been called out by Google in 2019 [2]. The paradigm for the
quantum computing architecture of today - that will prob-
ably stay for years - is that of a service that is available as
a Cloud service. The first 5 qubits available publicly on the
Cloud were released by IBM in 2016 [17] and now the ‘IBM
Quantum Experience’ has several processors available in the
Cloud to be used for free. The performance of a Quantum
computer are clearly related to the number of qubits, but also
to other factors like the noise, the errors and so on. IBM
Researchers proposed a way to measure this performance
named Quantum Volume [6]. Quantum Error Correction,
that started in the 90s, and control software are presently
very important ways to improve the performance of exist-
ing systems. Current cloud architecture are focused only on
quantum oriented experience where the user can create cir-
cuits to be run, can select a device on which to run them and
then can send the job to the service. The job will be queued
together with others and run when the device is available.
The whole path, however, is not connected with ‘classical’
computation, no management of a quantum algorithm defi-
nition with respect to real input is taken into account. The
inclusion of a quantum algorithm execution, from data en-
coding to the return of processed data for a classical compu-
tation flux needs to be addressed. The aim of this paper is
indeed to propose a reference architectural framework able
to bridge the gap between the classical and quantum compu-
tation for real problems. At the time of writing there are no
other proposals in this sense. We provide then a general ref-
erence framework as well as a working minimum valuable
product with a specific technology adoption in the context
of hybrid cloud.

2.1. Challenges

With the rising of quantum technologies (like IBM Quan-
tum system [18]), enterprises and researchers will be likely
to use this kind of technology almost on a daily basis in a
relatively near future. Thinking about a real scenario, an

Enterprise would probably be oriented in progressively inte-
grate quantum technologies in their up and running architec-
ture to support and improve existing workloads rather than
entirely replace existing workloads with quantum technolo-
gies. So, with this assumption, we developed an architec-
tural framework that addresses the problems of integrating
an API exposed Quantum provider, like the IBM Quantum
system, in an existing Enterprise architecture. There are two
major challenges in this: the first one is related to the techno-
logical and theoretical knowledge requirements in adopting a
quantum provider: currently the only way to integrate a reg-
ular workload (e.g. a web application or a scheduled batch)
is to use Qiskit SDK [19] or the Rigetti SDK [20], that repre-
sent, at this time of writing, the only two real quantum com-
puter full stack systems. In this study, we focused on Qiskit
SDK. Nevertheless, the same limitations and challenges that
will be presented in this chapter, apply to any Qiskit like API
indiscriminately. Qiskit is an SDK currently available only
for Python, this means that, without the proper decoupling
logic, the only workloads integrable with IBM Quantum sys-
tem would be Python workloads. Moreover, even in a sce-
nario in which a Python workload needs to be integrated with
IBM Quantum system, in order to use Qiskit, a developer
must know the logic of Quantum Circuit [21] composition.
In an Enterprise scenario, where a certain amount of effort is
required to change the developers team composition once it
has been defined (from different perspectives: timing, cost,
logistics), using Qiskit can become harsh [30]. In general,
we are talking about an accessibility problem, that is com-
mon also in the integration of a standard workload with HPC
environments [32]. In fact, the second type of challenges is
related to the similarities between IBM Quantum system and
an HPC environment. These two types of computational ser-
vices share some common features such as: the complexity
of the calculations and therefore the large process times, the
concurrent access to the hardware recourse from different
client systems that introduces a workload submission man-
agement and a scalability problem. We decided to develop
this framework on the cloud (IBM Cloud) for the extended
number of services that an enterprise grade cloud provider
has in terms of data storage, hosting and middleware tech-
nologies and message queues. The enterprise grade support
and SLA’s of the major cloud providers allow the team to
focus only on the component design and development rather
than infrastructural and availability problems.

3. Proposed architecture, requirements and
data flow

The framework developed aims to solve the two major
challenges of accessibility and workload management. The
accessibility challenge is tackled using a serverless FaaS (Func-
tions as a Service) technology [10] that exposes a language
agnostic HTTP interface to receive input data. This kind of
technology offers a finer grain computational unit and is de-
signed to execute small amounts of code in short time when
a specific action is performed (a trigger). This can be done

M.Grossi, L.Crippa, A.Aita et al.

Page 2 of 8



A Serverless Cloud Integration For Quantum Computing

i Layer 1 i
! Add to Queue 1

Containerised

Layer 2 i
Quantum H

Layer 3
Remove from Queue

« Application
=’

Java FrontEnd +

Post Process

BackEnd 1
J

1 i
: €2 Qiskit :
| i
i Faa$ :
1 21 Submit Job 1
| 1
1 Faas H
' > Submit Job '
E |
i s Faa$ i

i

Configuration
NoSQL Database
Event ! L J
streaming :
platform H r
In out o \
Containerised
'g Application
BackEnd 2
S

Polling Flow

FE/DB/BE1 Flow

Q Flow

Event streaming/BE2 Flow

Figure 1: Architectural overview diagram and flow.

both by deploying a single packaged and executable software
specifying the desired runtime (e.g. a .jar file with a Java
runtime) or by deploying a custom Docker container [16].
To achieve accessibility, we designed a Docker container
with Python as base image' extended with Qiskit, the open-
source SDK developed by IBM and by the Qiskit Commu-
nity to program quantum computers, as quantum integra-
tion framework that will expose a single HTTP API to re-
ceive raw data and transform it into a Quantum Circuit. The
Framework provides a single Docker container (hence a sin-
gle function with a single HTTP endpoint) for each specific
algorithm that will be implemented. This is the decoupling
logic that the Framework implements, hence it requires the
availability of such technology in the environment chosen
for deployment. In this way, a dedicated team can work
only on the FaaS platform to expose multiple quantum al-
gorithms through an HTTP API and a different system ad-
ministration team can invoke them simply calling the des-
ignated endpoint, without worrying about the implementa-
tion of the algorithm itself. It is important to note that FaaS
technology addresses also another architectural requirement:
the scalability. Since the Framework operates as a facilita-
tor for accessing the IBM Quantum system, its components
will be used by multiple external systems; this implies that
it needs to be highly scalable to avoid critical bottlenecks
in the job submission phase. Here comes another analogy
with the HPC architectures: the job scheduling system. This
is crucial for the overall performances of the whole frame-
work [26]. Due to the scalability offered by the FaaS tech-
nology, in order to face an increasing amount of requests,
the Framework gives the possibility for many external sys-
tems to be integrated with it without loss of performances,
handling Quantum Circuit composition and job submission.
This is a further requirement of the FaaS component to achieve

Ihttps://hub.docker.com/r/ibmfunctions/action-python-v3.7

scalability. Despite the good scalability level in the phase of
job submission, to be effectively scalable, the Framework
needs another component to increase the scalability in the
phase of results retrieval. The adopted component is a queue
with a kafka interface. This queue component is used both
by the FaaS element, that writes a submission report on a
specific topic, containing all the information needed to re-
trieve the output of the job together with the identifier of the
client that submitted it, and by the results collector compo-
nent (a Python application further referenced as Backend 2)
to retrieve the job results and send them as a message on
another specific topic of the queue. An important prerequi-
site for the queue component is the high throughput, since it
needs to handle all the messages received by the FaaS com-
ponent during the job submission phase. As per the user in-
terface component (a Java application further referenced as
Backend 1) and results retriever component (Python applica-
tion) the only architectural requirement is the availability of
a general Java and Python runtimes to run the code. Since
the code is ready to be containerized, also a standard con-
tainer runtime (like Docker or Podman) and a container reg-
istry would work perfectly fine. In the context of the MVP
we chose Cloud Foundry as runtime environment since it
offers auto-configuration capabilities and handy administra-
tion interfaces that reduce the time and the effort needed for
set it up. In Fig. 1 we show the proposed overall Architec-
ture overview diagram and flow, as a first hybrid quantum-
classical approach reflected to three different layers. In the
following paragraph we describe a specific flow according
to the first simple web application built: the representation
of multiple 2-characters emoticons using the superposition
property of quantum computing.

A user opens the user interface (UI) in a web browser
and inserts two emoticons to be visualized in superposition.
A “submit button” triggers the Layer 1 to add a job in the

M.Grossi, L.Crippa, A.Aita et al.

Page 3 of 8



A Serverless Cloud Integration For Quantum Computing

queue and it sets itself as a listener of the outcomes. Like
a scheduler, backend system engages the Event Streams and
the IBM Quantum computer to submit the job in the queue
on Layer 2. Once the quantum computer has provided the
computation outcome, IBM Cloud Foundry backend in Layer
3 is engaged and the results are processed. Finally, the Ul
gets unlocked and the results are displayed.

4. Framework components

4.1. FrontEnd

Generally, the proposed framework User Interface (UI)
leverages on a set of JavaScript functions, asynchronous Ajax
calls, and a well-defined data structure to get inputs and to
read outputs. All the graphic comparts of HTML and CSS,
together with the “general” JavaScript functions used to build
the Ul itself, can be modelled to fit customer’s need and tem-
plates: it can be implemented in a “vanilla” flavours such as
the one included prototype, or using any kind of ready to use
a template (i.e., Bootstrap, React, etc.). The FrontEnd layer
has the role of input collector and result displayer: it uses
a set of client-side functions to perform the main integra-
tion tasks. The Ul is built using the Carbon Design System
components and functions, leveraging on the mobile-first ap-
proach, and ensuring cross-browser and cross-device com-
patibility. The FrontEnd is built as a general UI containing
all applications developed under the proposed framework.
However, it can be adapted to the user’s need by changing
the structure and graphics of the pages, leaving unaltered
the JavaScript functions while leveraging on the proposed
framework to communicate with the BackEnd 1. When a
user interacts with the web page, a trigger is activated and the
FrontEnd collects the data, putting them into the integration
data structure and sending them to the BackEnd 1. Using
a WebSocket connection, the page subscribes to a specific
topic that belongs to BackEnd 1, to be able to retrieve results
from the backend asynchronously. After a run is launched, a
pop-up confirms the successful job submission to the back-
end. After the algorithm has run, the output is stored into the
browser cache using a predefined data model, together with
all the needed metadata. This data model provides a com-
mon JSON structure to pass data from the UI to the BackEnd
1, and vice versa. Now, it can be retrieved by the FrontEnd
using a set of functions and the results can be used to display
the proper page.

4.2. BackEnd 1

As reported in the picture of the architecture, the Back-
End 1 is made of a single Java application hosted on IBM
Cloud Foundry, which communicates with Cloudant [14] to
read configuration parameters needed to call the Cloud Func-
tions. To be more specific, the data model is composed by
just one collection called ‘config’ that contains the parame-
ters that let BackEnd 1 to call the Cloud Functions. In the fol-
lowing we show an example of how the BackEnd 1 is linked
to the database, this allows to retrieve data and to recall the
cloud functions:

{
"_id": "smile_super_position”,
"functionHttpMethod”: "POST”,
"functionBackendUrl”: "URL",
"functionParams”: {
"body"”: "incomingRequestBody",
"headers”: {
"Authorization”: "IAMBearerToken",
"Content-Type"”: "application/json",
"Accept”: "application/json”

The BackEnd 1 reads these data and translates this config-
uration into a restful API call. All the details which make
it possible are given: the method (POST), the endpoint, the
authentication and the header. Given a new cloud function,
the addition of new functionalities to this asset is as simple as
adding another record into the config collection. This way,
the architecture guarantees extensibility and it can be eas-
ily reused in future integration. Once the job is submitted
to the quantum computer via the quantum API provided in
this case by Qiskit, an attribute that contains a random Event
Streams topic (e.g.: topic-1234) is read from the queue. User
segregation is achieved since each client will be listening
on a single specific topic. Concerning the development, we
adopted Java Spring Boot[31] as a framework to enable a
“production-ready" environment benefiting from the auto-
matic Spring configuration and third-party libraries manage-
ment.

4.3. Cloud Functions

The serverless architectures allow the developers to fo-
cus on business logic exclusively without worrying about
preparing the runtime, managing deployment and infrastruc-
ture related concerns, in this case a quantum computing inte-
gration [25]. The Cloud Functions component [13] defined
in the proposed framework is the one responsible to build
the quantum algorithm and execute the related circuit on the
IBM Quantum provider, giving the possibility to choose be-
tween the available quantum hardware or simulators. From
an architectural point of view, this is a block of instructions
that runs on IBM Cloud Functions. This block of code, that
is called “action”, is invoked by the BackEnd 1 to process
a user request received from the front end layer. The code
of the action is written in Python, the language adopted by
the Qiskit library. When the action is called from the Back-
End 1, a quantum circuit is created according to the input
parameters. Then, an IBM Quantum job is defined and it is
sent to the IBM Quantum system for the execution. Server-
less architectures are gaining traction in cloud-based appli-
cation architectures used by startups and matured organiza-
tions alike [27].

Instead of waiting for its final results, we collect its job
ID? as a parameter that is provided to the BackEnd 2 on a

2https: //qiskit.org/documentation/_modules/qiskit/providers/ibmqg

M.Grossi, L.Crippa, A.Aita et al.

Page 4 of 8


https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html

A Serverless Cloud Integration For Quantum Computing

Event Streams queue.
From an application point of view, the action is invoked
by BackEnd 1 with the following set of parameters:

e algorithm-specific input parameters needed to build
the related quantum circuit;

e the type of IBM Quantum backend requested: real
quantum hardware, noiseless simulator or noisy sim-
ulator;

e the client ID and process job ID?; these two parame-
ters are simply transmitted to BackEnd 2 and they are
not used by the action.

Once the afore mentioned parameters are acquired, the
action creates the corresponding quantum circuit. The action
is authenticated via the quantum API used, in this case the
IBM Quantum provider, and it runs the execution request on
the selected quantum backend.

When the algorithm execution has been selected to run
on a real quantum device, the code selects automatically the
least busy IBM Quantum backend according to the number
of qubits needed to map the quantum circuit. When the se-
lection is the quantum simulator, the backend is set to be the
“qasm simulator”. This option is used both in case of a noise-
less simulation and in case of a noisy simulation, where the
action uses the "qasm simulator" activating the noise model
of the least busy real device.

After the execution command, the action sends to the
Event Streams queue the IBM Quantum provider job ID, the
selected quantum backend, and the client and job ID received
by the BackEnd 1. In case of error during the job submission
to the IBM Quantum provider, or during the transmission of
the parameters to the Event Streams queue, the action returns
the associated error message.

4.4. BackEnd 2

The BackEnd 2 is a contenierized application whose main
task is to retrieve results of a quantum job as soon as they
are available, regardless of the selected IBM Quantum back-
end, that could be anyone of the available quantum devices
or cloud simulators.

BackEnd 2 activity focuses on the management of the
job ID polling, and this is performed by the integration of
two framework components:

e Kafka client: this component enables communication
between the BackEnd 1, the BackEnd 2 and the Cloud
Functions component (both in input and in output);

e Polling: this component uses Qiskit libraries to re-
trieve a job final result and it uses the Event Stream
component to deliver results back to BackEnd 1.

The BackEnd 2 is written and deployed on a Python IBM
Cloud Foundry instance. In addition, it leverages Python

/job/ibmgjob.html
3Not the IBM Quantum job ID.

multi-process module to enable the management of more
than one request at a time *. The main function is single-

"qiskit_job_data": {
""qiskit_job_id": "5fb50ale3d211b@@1996bbbd",
"backend_name": "ibmg_gasm_simulator"

%

"clientID": "0303521272",
"jobID": "0413372717",
“timeUTC": "2020-11-18 11:48:50.315726"

Figure 2: Example of input JSON.

process and it continuously gets events from the IBM Event
Streams input topic, putting them into a manager pool queue
(process-safe) that is shared between the running processes.
The main function also initiates the pool workers, triggered
by an event that consists of a JSON sent to the topic by the
Cloud Functions component, and that contains all the rele-
vant information about the job. In Fig. 2 we show an exam-
ple of an event’s input JSON.

In the Polling component, each independent process worker
gets a job from the shared queue, and monitor it until the re-
sultis ready. In Fig. 3 is reported the overview of the Polling
mechanism inside the BackEnd 2.

4.4.1. Kafka Client Component

The Event Streams component consists of two Python
classes that implement connections with the input and out-
put components of the queue. They lie on the same Event
Streams instance managing different topics. The Kaftka-based
Event Streams component allows to realize a smart decou-
pling between the quantum and classical world enabling asyn-
chronous communication mechanisms needed to reduce the
connection time to the quantum on-line system. The input
component is represented by the insertion from the Cloud
functions of the JSON containing the call execution id and
the related job ID. They were produced submitting a quan-
tum circuit to be executed on the IBM Quantum system. This
part is implemented by a class that interacts with the queue
in two ways:

e listen as “consumer” to retrieve the incoming mes-
sages and then activate the polling activity through the
“Polling component”;

e write as “producer” to re-insert in the queue the un-
processed job ID. It happens when, considering the
time between the “estimated time” of the process and
the actual timestamp exceeds a pre-defined threshold.
This control has been developed to reduce as much as
possible the polling time on the IBM Quantum system.

The output component of the queue is where the BackEnd 2
writes the results retrieved from IBM Quantum. The compo-
nent then makes the results available to the BackEnd 1, that
will proceed to post-process and to retrieve them back to the

4https://docsApython.org/3A7/library/multiprocessingAhtml

M.Grossi, L.Crippa, A.Aita et al.

Page 5 of 8


https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html
https://docs.python.org/3.7/library/multiprocessing.html

A Serverless Cloud Integration For Quantum Computing

Input
Topic

Event
Streams

Output
Topic

Manager

("l BackEnd 2 — Polling
Poll Worker

Poll Worker

Poll Worker

Poll Worker

-1

€S Qiskit

IBM
Quantum

Figure 3: Polling mechanism overview.

front end. The class is designed to write as “producer” on
the output queue and to send JSON extended input together
with the retrieved results or the error messages.

4.4.2. Polling Component

This component contains all the dependencies related to
the Qiskit framework. The task of the Polling component is
to get, using the Event Streams component, an IBM Quan-
tum job launched by the Cloud Functions on BackEnd 1
proper input, monitoring its progress and returning the re-
sults to the BackEnd 1. This component is initialized in the
main function as poll workers: each worker gets an event
from the manager pool queue, processing it independently
from each others.

It consists of three modules:

e PollingIBMQWorker: contains the worker started in
the main function;

e Polling]BMQ: a class, whose method called “retrieve-
AndDeliverResult", contains all the logic of the pro-
cess for retrieve and manage each job’s result from
IBM Quantum,;

e QuantumUltils: contains functions for the authentica-
tion to the IBM Quantum cloud. When each worker is
started, the IBM Quantum account is enabled using its
API key authentication, and it creates the connection
to the IBM Quantum systems.

As a first step, the PollingIBMQ class checks if the job
exists on the quantum backend and then checks its final state
(e.g. DONE, CANCELED or ERROR). If the job is in one
of the allowed final states, the Polling]BMQ sends it to the

output topic, and in case the final status is DONE it adds the
obtained results.

If the job is not complete and if the quantum backend is
a real quantum device, it checks what is its estimated com-
pletion time>: if it is less than a defined time, it will wait
for the job to be finished using Qiskit proper function; oth-
erwise, it will send the event back to the input topic so that
it can process another job. In the case of a quantum simu-
lator backend, it automatically starts waiting for the job, be-
cause the estimated time is not provided by Qiskit as waiting
time is usually much less. The estimated completion time is
then added to the JSON, so that it can be used by the Event
Streams component to filter the event. If the job ends in a
final error state or if there is an error in the process, this
component always returns a result with the description of
the encountered error.

This strategy gives priorities to the jobs based on results
readiness, to better manage multiple requests and, likewise,
reducing the waiting time for the frontend users.

In Fig. 4 there is an example of the final JSON.

5. Conclusions

The potential of an innovative technology such as quan-
tum computing is evident in the number of scientific articles
that show its advances. The real scope of the technology
and its adoption depend on the possibility and practicality
of integrating it into the current context. To facilitate this
adoption, in this paper we define the criteria and critical is-

Sprovided by the queue_info() function (https: //qiskit.org/documenta
tion/_modules/qiskit/providers/ibmq/job/ibmgjob.html1}IBMQJob.queue_inf

0)

M.Grossi, L.Crippa, A.Aita et al.

Page 6 of 8


https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html##IBMQJob.queue_info
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html##IBMQJob.queue_info
https://qiskit.org/documentation/_modules/qiskit/providers/ibmq/job/ibmqjob.html##IBMQJob.queue_info

A Serverless Cloud Integration For Quantum Computing

"input_info": {
"clientID "9303521272",
"jobID": "@413372717"

W

“"BE2": {
"status": "OK",
"results": {

h
"timeUTC_BE2": '"2020-11-18 17:45:21.935561"

Figure 4: Example of final JSON.

sues for a possible integration of quantum computing within
a cloud computing architecture. After an introduction about
a general architecture and its operation using various cloud
computing technologies, we even describe a real implemen-
tation via a Minimum Viable Product. In this context we de-
veloped a scheduler that allows users to correctly schedule
and manage several quantum jobs. This is a simple solution
that can be expanded and it can be downloaded from GitHub.
In this scenario we used the IBM Quantum API tool, how-
ever its role can be extended without loss of generalization
to any other Quantum API tools. The proposed solution can
be schematically described in the following:

Why
e nowadays, quantum algorithms can be run on differ-
ent web platforms, where the user needs to write an
algorithm using the available tools;

e programmatic access via API can be done using Soft-
ware Development Kits (SDKs);

e Astheinterestin quantum computing continues to grow,
it is urgent to find methods to fill the gap between a
low-level approach and the high-level general user ex-
perience.

What
The proposed framework provides developers, UI design-
ers and researchers with a system that:

e cnables and speeds up the creation and the deployment
of web applications with a hybrid classical-quantum
backend;

e creates a custom user experience based on the problem
to be solved;

e spreads out the usage of quantum computing on Cus-
tomer’s Production environments.

How
e This method has been reflected in a well-defined frame-
work built as MVP on IBM Cloud and Quantum tech-
nologies:

IBM Cloud Foundry;
IBM Cloudant;

IBM Event Streams;
IBM Cloud Functions;
— IBM Quantum.

e A new approach on asynchronous job submission method

specially created to support hybrid classical- quantum
web applications.

e Bestpractices: configuration driven architecture, open
source, loosely coupled architectural pattern to sched-
ule computation (polling/batch).

Acknowledgements We would like to acknowledge G. De
Sio and L. Savorana for grateful discussion and interaction.
We acknowledge use of the IBM Quantum for this work. The
views expressed are those of the authors and do not reflect
the official policy or position of IBM or the IBM Quantum
team. IBM, the IBM logo, and ibm.com are trademarks of
International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names
might be trademarks of IBM or other companies. The cur-
rent list of IBM trademarks is available at https://www.ibm.
com/legal/copytrade.

6. References

CRediT authorship contribution statement

M. Grossi: Conceptualization, Methodology, Software,
Writing - Original Draft, Review & Editing. L. Crippa:
Conceptualization, Methodology, Software, Writing - Orig-
inal Draft, Review & Editing. A. Aita: Conceptualization,
Methodology, Software, Writing - Original Draft, Review &
Editing. G. Bartoli: Methodology, Software Design, Writ-
ing, Review & Editing. V. Sammarco: Methodology, Soft-
ware Design, Writing, Review & Editing. E. Picca: Soft-
ware and Formal analysis, Writing, Review & Editing. N.
Said: Software and Formal analysis, Writing, Review &
Editing. F. Tramonto: Software and Formal analysis, Writ-
ing, Review & Editing. F. Mattei: Supervision and valida-
tion.

References

[1] Arrazola, J.M., Bergholm, V., Bradler, K., Bromley, T.R., Collins,
M.J., Dhand, I., Fumagalli, A., Gerrits, T., Goussev, A., Helt, L.G.,
etal., 2021. Quantum circuits with many photons on a programmable
nanophotonic chip. Nature 591, 54—60. URL: http://dx.doi.org/10.
1038/541586-021-03202-1, d0i:10.1038/541586-021-03202-1.

[2] Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J., Barends,
R., Biswas, R., Boixo, S., Brandao, F., Buell, D., Burkett, B., Chen,
Y., Chen, Z., Chiaro, B., Collins, R., Courtney, W., Dunsworth, A.,
Farhi, E., Foxen, B., Martinis, J., 2019. Quantum supremacy using
a programmable superconducting processor. Nature 574, 505-510.
doi:10.1038/541586-019-1666-5.

[3] Benioff, P., 1980. The computer as a physical system: A microscopic
quantum mechanical hamiltonian model of computers as represented
by turing machines. Journal of Statistical Physics 22, 563-591. doi: 10
.1007/BF01011339.

M.Grossi, L.Crippa, A.Aita et al.

Page 7 of 8


https://www.ibm.com/legal/copytrade
https://www.ibm.com/legal/copytrade
http://dx.doi.org/10.1038/s41586-021-03202-1
http://dx.doi.org/10.1038/s41586-021-03202-1
http://dx.doi.org/10.1038/s41586-021-03202-1
http://dx.doi.org/10.1038/s41586-019-1666-5
http://dx.doi.org/10.1007/BF01011339
http://dx.doi.org/10.1007/BF01011339

[4]

[5]

[6]

[7]

[8]

[9]

(10]

(11]

(12]

[13]
[14]
[15]
[16]
[17]
[18]
[19]

[20]
(21]

(22]

[23]

(24]

[25]

A Serverless Cloud Integration For Quantum Computing

Bruzewicz, C.D., Chiaverini, J., McConnell, R., Sage, J.M., 2019.
Trapped-ion quantum computing: Progress and challenges. Applied
Physics Reviews 6, 021314. URL: https://doi.org/10.1063/1.508816
4,d01:10.1063/1.5088164, arXiv:https://doi.org/10.1063/1.5088164.
Coulouris, G.F., Dollimore, J., Kindberg, T., 2005. Distributed sys-
tems: concepts and design. pearson education.

Cross, A.W., Bishop, L.S., Sheldon, S., Nation, P.D., Gambetta, J.M.,
2019. Validating quantum computers using randomized model cir-
cuits. Phys. Rev. A 100, 032328. URL: https://link.aps.org/doi/1
0.1103/PhysRevA.100.032328, doi:10.1103/PhysRevA.100.032328.
DiVincenzo, D.P., 2000. The physical implementation of quantum
computation. Fortschritte der Physik 48, 771-783. URL: http://dx
.doi.org/10.1002/1521-3978(200009/48:9/11<771::AID-PROP771>3.
0.C0;2-E, d0i:10.1002/1521-3978(200009/48:9/11<771: :aid-prop771>
3.0.co;2-e.

Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M., 2003.
The many faces of publish/subscribe. ~ACM computing surveys
(CSUR) 35, 114-131.

Feynman, R.P., 1982. Simulating physics with computers. Int. J.
Theor. Phys. 21, 467-488. doi:10.1007/BF02650179.

Fox, G.C., Ishakian, V., Muthusamy, V., Slominski, A., 2017. Status
of Serverless Computing and Function-as-a-Service(FaaS) in Indus-
try and Research. arXiv:1708.08028 [cs] URL: http://arxiv.org/ab
s/1708.08028, d0i:10.13140/RG.2.2.15007.87206. arXiv: 1708.08028.
Gomaa, H., Hussein, M., 2004. Software reconfiguration patterns for
dynamic evolution of software architectures, in: Proceedings. Fourth
Working IEEE/IFIP Conference on Software Architecture (WICSA
2004), IEEE. pp. 79-88.

Grover, L.K., 1996. A fast quantum mechanical algorithm for
database search, in: Proceedings of the Twenty-Eighth Annual ACM
Symposium on Theory of Computing, Association for Computing
Machinery, New York, NY, USA. p. 212-219. URL: https://doi.
org/10.1145/237814.237866, d0i:10.1145/237814.237866.

IBM, a. Cloud functions - overview. https://www.ibm.com/cloud/fu
nctions.

IBM, b. Cloudant: Documents. https://cloud.ibm.com/docs/service
s/Cloudant?topic=cloudant-documents.

IBM, c. Event streams - ibm event streams - overview. https://www.
ibm.com/cloud/event-streams.

IBM, d. Ibm cloud functions. https://cloud.ibm.com/docs/openwhi
sk?topic=openwhisk-actions.

IBM, e. Ibm quantum service. https://www.ibm.com/blogs/research
/2016/05/quantum-computing-time-build-quantum-community/.

IBM, f. Ibm quantum service. https://quantum-computing.ibm.com/
services.

IBM, g. Ibm quantum service. https://www.ibm.com/quantum-comput
ing/developers/.

IBM, h. Ibm quantum service. https://docs.rigetti.com/en/stable.
IBM, i. Ibm quantum service. https://qiskit.org/documentation/a
pidoc/circuit.html.

Kjaergaard, M., Schwartz, M.E., Braumiiller, J., Krantz, P., Wang,
J.IJ., Gustavsson, S., Oliver, W.D., 2020. Superconducting qubits:
Current state of play. Annual Review of Condensed Matter Physics
11, 369-395. URL: http://dx.doi.org/10.1146/annurev-conmatphys-
031119-050605, doi:10.1146/annurev-conmatphys-031119-050605.
Lamport, L., 2019. Time, clocks, and the ordering of events in a
distributed system, in: Concurrency: the Works of Leslie Lamport,
pp. 179-196.

M. Grossi, L.C., Aita, A., 2019. Build and deploy quantum-based
web applications using qiskit & python flask on ibm cloud. https:
//medium.com/build-and-deploy-quantum-based-web-applications
/build-and-deploy-quantum-based-web-applications-using-qis
kit-python-flask-on-ibm-cloud-bocboa@1e5f2. [Online; accessed
18-November-2019].

Rajan, R.A.P., 2018. Serverless architecture - a revolution in cloud
computing, in: 2018 Tenth International Conference on Advanced
Computing (ICoAC), pp. 88-93. doi:10.1109/IC0AC44903.2018.89
39081.

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Reuther, A., Byun, C., Arcand, W., Bestor, D., Bergeron, B., Hubbell,
M., Jones, M., Michaleas, P., Prout, A., Rosa, A., Kepner, J., 2018.
Scalable system scheduling for hpc and big data. Journal of Parallel
and Distributed Computing 111, 76-92. URL: https://www.scienc
edirect.com/science/article/pii/S0743731517301983, doi:https:
//doi.org/10.1016/j.jpdc.2017.06.009.

Sewak, M., Singh, S., 2018. Winning in the era of serverless comput-
ing and function as a service, in: 2018 3rd International Conference
for Convergence in Technology (I2CT), pp. 1-5. doi:10.1109/12CT.2
018.8529465.

Shor, P., 1994. Algorithms for quantum computation: discrete log-
arithms and factoring, in: Proceedings 35th Annual Symposium on
Foundations of Computer Science, pp. 124-134. doi:10.1109/SFCS.1
994.365700.

Thein, KM.M., 2014. Apache kafka: Next generation distributed
messaging system. International Journal of Scientific Engineering
and Technology Research 3, 9478-9483.

Volkoff, O., Elmes, M.B., Strong, D.M., 2004. Enterprise systems,
knowledge transfer and power users. The Journal of Strategic In-
formation Systems 13, 279-304. URL: https://www.sciencedir
ect.com/science/article/pii/S0963868704000496, doihttps:
//doi.org/10.1016/3.jsis.2004.11.004. special issue "Understanding
the Contextual Influences on Enterprise System Design, Implementa-
tion, Use and Evaluation".

Webb, P., Syer, D., Long, J., Nicoll, S., Winch, R., Wilkinson, A.,
Overdijk, M., Dupuis, C., Deleuze, S., 2013. Spring boot reference
guide. Part IV. Spring Boot features 24.

Wong, A.K., Goscinski, A.M., 2013. A unified framework for the
deployment, exposure and access of hpc applications as services in
clouds. Future Generation Computer Systems 29, 1333—1344. URL:
https://www.sciencedirect.com/science/article/pii/S0167739X130
00307, doithttps://doi.org/10.1016/j.future.2013.01.014. includ-
ing Special sections: High Performance Computing in the Cloud &
Resource Discovery Mechanisms for P2P Systems.

M.Grossi, L.Crippa, A.Aita et al.

Page 8 of 8


https://doi.org/10.1063/1.5088164
https://doi.org/10.1063/1.5088164
http://dx.doi.org/10.1063/1.5088164
http://arxiv.org/abs/https://doi.org/10.1063/1.5088164
https://link.aps.org/doi/10.1103/PhysRevA.100.032328
https://link.aps.org/doi/10.1103/PhysRevA.100.032328
http://dx.doi.org/10.1103/PhysRevA.100.032328
http://dx.doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
http://dx.doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
http://dx.doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
http://dx.doi.org/10.1002/1521-3978(200009)48:9/11<771::aid-prop771>3.0.co;2-e
http://dx.doi.org/10.1002/1521-3978(200009)48:9/11<771::aid-prop771>3.0.co;2-e
http://dx.doi.org/10.1007/BF02650179
http://arxiv.org/abs/1708.08028
http://arxiv.org/abs/1708.08028
http://dx.doi.org/10.13140/RG.2.2.15007.87206
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
http://dx.doi.org/10.1145/237814.237866
https://www.ibm.com/cloud/functions
https://www.ibm.com/cloud/functions
https://cloud.ibm.com/docs/services/Cloudant?topic=cloudant-documents
https://cloud.ibm.com/docs/services/Cloudant?topic=cloudant-documents
 https://www.ibm.com/cloud/event-streams
 https://www.ibm.com/cloud/event-streams
https://cloud.ibm.com/docs/openwhisk?topic=openwhisk-actions
https://cloud.ibm.com/docs/openwhisk?topic=openwhisk-actions
https://www.ibm.com/blogs/research/2016/05/quantum-computing-time-build-quantum-community/
https://www.ibm.com/blogs/research/2016/05/quantum-computing-time-build-quantum-community/
https://quantum-computing.ibm.com/services
https://quantum-computing.ibm.com/services
https://www.ibm.com/quantum-computing/developers/
https://www.ibm.com/quantum-computing/developers/
https://docs.rigetti.com/en/stable
https://qiskit.org/documentation/apidoc/circuit.html
https://qiskit.org/documentation/apidoc/circuit.html
http://dx.doi.org/10.1146/annurev-conmatphys-031119-050605
http://dx.doi.org/10.1146/annurev-conmatphys-031119-050605
http://dx.doi.org/10.1146/annurev-conmatphys-031119-050605
https://medium.com/build-and-deploy-quantum-based-web-applications/build-and-deploy-quantum-based-web-applications-using- qiskit-python-flask-on-ibm-cloud-b0cb0a01e5f2
https://medium.com/build-and-deploy-quantum-based-web-applications/build-and-deploy-quantum-based-web-applications-using- qiskit-python-flask-on-ibm-cloud-b0cb0a01e5f2
https://medium.com/build-and-deploy-quantum-based-web-applications/build-and-deploy-quantum-based-web-applications-using- qiskit-python-flask-on-ibm-cloud-b0cb0a01e5f2
https://medium.com/build-and-deploy-quantum-based-web-applications/build-and-deploy-quantum-based-web-applications-using- qiskit-python-flask-on-ibm-cloud-b0cb0a01e5f2
http://dx.doi.org/10.1109/ICoAC44903.2018.8939081
http://dx.doi.org/10.1109/ICoAC44903.2018.8939081
https://www.sciencedirect.com/science/article/pii/S0743731517301983
https://www.sciencedirect.com/science/article/pii/S0743731517301983
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2017.06.009
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2017.06.009
http://dx.doi.org/10.1109/I2CT.2018.8529465
http://dx.doi.org/10.1109/I2CT.2018.8529465
http://dx.doi.org/10.1109/SFCS.1994.365700
http://dx.doi.org/10.1109/SFCS.1994.365700
https://www.sciencedirect.com/science/article/pii/S0963868704000496
https://www.sciencedirect.com/science/article/pii/S0963868704000496
http://dx.doi.org/https://doi.org/10.1016/j.jsis.2004.11.004
http://dx.doi.org/https://doi.org/10.1016/j.jsis.2004.11.004
https://www.sciencedirect.com/science/article/pii/S0167739X13000307
https://www.sciencedirect.com/science/article/pii/S0167739X13000307
http://dx.doi.org/https://doi.org/10.1016/j.future.2013.01.014

