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Quantum machine learning questions 

• Classical intractability: what useful problems can we 

solve on a quantum computer that we cannot on a 

classical computer? 

• Innovation: what new algorithms can we come up 

with?

• Computational complexity: how can we obtain certain 

speedups? 

• Can quantum advantage be proved with QML? 
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Characterize Quantum Advantage
• Classical machine learning models can often compete or outperform existing 

quantum models even on data sets generated by quantum evolution, especially 
at large system sizes

• Large quantum Hilbert space in existing quantum models can result in 
significantly inferior prediction performance compared to classical machines: 
expressivity of QML hinder generalization

• We need a methodology for assessing the potential for quantum advantage in 
prediction on learning tasks

• Are there alternative research questions beyond the goal of beating classical
machine learning?
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Lifecycle of a Quantum Classification Problem [6,7,8]

• Features reduction/extraction (classic step: PCA, AE, etc…)

• Data Encoding

• Feature Map / ansatz definition for kernel and variational methods

• Read Out (Different technologies, NISQ, Error…)

[6] Robust data encodings for quantum classifiers, Ryan LaRose and Brian Coyle, Phys. Rev. A 102, 032420 
[7] Quantum convolutional neural network for classical data classification, https://arxiv.org/pdf/2108.00661.pdf
[8] Quantum Support Vector Machines for Continuum Suppression in B Meson Decays, https://arxiv.org/abs/2103.12257

M. Grossi, S. Vallecorsa - CERN QTI 6

https://arxiv.org/pdf/2108.00661.pdf
https://arxiv.org/abs/2103.12257


Lifecycle of a Quantum Classification Problem

• Features extractions/reduction (classic step: PCA, AE, etc…)

1) Principal Components Analysis (PCA) 

2) Convolutional Autoencoder

3) Wasserstein Variational Autoencoder

4) Transformers

5) Transfer Learning 
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Lifecycle of a Quantum Classification Problem

• Features reduction/extraction (classic step: PCA, AE, etc…)

• Data Encoding à how much is it important?

1) Amplitude Encoding
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Exponential compression in 
number of qubits

nqubit ∝ O(log(N)) 

Polynomial number of gates

ngate ∝ O(poly(N))
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Lifecycle of a Quantum Classification Problem

• Features reduction/extraction (classic step: PCA, AE, etc…)

• Data Encoding à how much is it important?

3) Hybrid Angle Encoding
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Compromise between Amplitude and 
Qubit Encoding

Still requires too many two qubit gates

Encode 𝑏×2! values into 𝑏×𝑚 qubits 
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à the choice of mapping (when exact) has no impact on the learning performance of the resulting (explicit) model, 
…it does impact its kernelization [4]
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QML implementations

Parametric ansatz
Can use gradient-free methods or
stochastic gradient-descent
Data Embedding can be learned

Input 
data

〈Out〉

LossUpdates

Variational algorithms - EXPLICIT Kernel methods - IMPLICIT

Feature maps as quantum kernels
Use classical kernel-based training
Convex losses, global minimum
Compute pair-wise distances in Ndata

M. Schuld, QML seminar, 03/02/21 CERN
https://indico.cern.ch/event/893116/

Do they really differ? Where to focus?
à What is easiest to use/define?
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Data reduction - Data Encoding – Model performance (accuracy vs generalization)

DATA Model

[1] The Inductive Bias of Quantum Kernels - https://proceedings.neurips.cc/paper/2021/file/69adc1e107f7f7d035d7baf04342e1ca-Paper.pdf
[4] Quantum Machine Learning Beyond Kernel Methods - https://arxiv.org/abs/2110.13162

à guidance to find a quantum advantage in ML
à no recipe for obtaining a quantum advantage on a 
classical dataset [1]

à Representer theorem: implicit models can always achieve a 
smaller labelling error than explicit models on the same 
training set [4]
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DATA Model

[11] Lorentz Group Equivariant Neural Network for Particle Physics - https://arxiv.org/pdf/2006.04780.pdf
[2] Covariant quantum kernels for data with group structure - https://arxiv.org/abs/2105.03406
[4] Quantum Machine Learning Beyond Kernel Methods - https://arxiv.org/abs/2110.13162

à many relevant problems benefit from latent space 
connected with the theory of the specific underlying 
symmetry group [11] 

à identify a broad class of kernels that relate to 
learning problems with a particular structural aspect 
(group structure – i.e. discrete log) [2]

à general method using covariant kernel alignment to 
explores a variety of fiducial states by applying a 
parameterised quantum circuit

Unless we have a clear idea how the data generating process can be 
described with a quantum computer, we cannot expect an advantage by using 
a quantum model in place of a classical machine learning model.

Data reduction - Data Encoding – Model performance (accuracy vs generalization)

à guidance to find a quantum advantage in ML
à no recipe for obtaining a quantum advantage on a 
classical dataset. [1]

à Representer theorem: implicit models can always achieve a 
smaller labelling error than explicit models on the same 
training set [4]
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Potential Quantum Advantage

• Reduce the dimensionality of RKHS by projection of QK:
Ø to limit the expressivity

Ø to construct inductive bias classically hard 

related to the target function

Native quantum state space to define the kernel function can fail to learn even a simple 
function when the full exponential quantum state space is being used.

We have to utilize the entire exponential quantum state space otherwise the quantum 
machine learning model could be simulated efficiently classically.
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A possible theoretical discriminator: The power of Data in (Q)ML algorithms [3]

[3] The power of Data in (Q)ML algorithms - https://www.nature.com/articles/s41467-021-22539-9
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projected quantum kernels still use the 

exponentially large quantum Hilbert space for 

evaluation and can be hard to simulate classically
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[3] The power of Data in (Q)ML algorithms - https://www.nature.com/articles/s41467-021-22539-9

A possible solution: Projected Quantum Kernel [3]

The projection allows us to reduce to a low-dimensional classical space that can generalize better
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Theoretically, Projected quantum kernel can learn 

any quantum models with sufficient data. 

It can be reconstructed by local randomized 

measurements using the formalism of classical 
shadows. 
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Quantum models

[4] Quantum Machine Learning Beyond Kernel Methods - https://arxiv.org/abs/2110.13162

EXPLICIT

IMPLICIT
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3 types of quantum machine learning
models that can be formulated as linear 
models in quantum feature spaces: 

- encoded data point is measured according
to a variational observable

- weighted inner products of encoded data 
points are used to assign labels

- parametrized quantum circuits are universal
function approximators, data- encoding
layers, interlaid with variational unitaries

24

https://arxiv.org/abs/2110.13162


[4] Quantum Machine Learning Beyond Kernel Methods - https://arxiv.org/abs/2110.13162

• Models defined and trained variationally can exhibit a critically better generalization performance than their 

kernel formulations

• Explicit models is expected to terminate in O(M) optimization steps 

• Implicit models can be computed using O(M2) evaluations of inner products on a quantum computer

Different scaling with the number of data samples:

• number of parameters of the order of the training set size

• Small number of variational parameters 

https://pennylane.ai/qml/demos/tutorial_kernel_based_training.html
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Quantum models comparison
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A unified picture for EX, IM, data re-
uploading quantum models

[4] Quantum Machine Learning Beyond Kernel Methods - https://arxiv.org/abs/2110.13162

• Data re-uploading circuits can be represented exactly by 
explicit linear models in larger feature spaces, which allows 
them to be reformulated as implicit kernel methods 

• Kernelizing a linear model also has its advantages, namely 
generalizing its hypothesis family and turning the learning 
task into a convex optimization problem 

• Representer theorem: implicit models can always achieve a 
smaller labelling error than explicit models on the same 
training set.  

• explicit models exhibit a critically better generalization 
performance than their kernel formulations

à increased expressivity can also be guaranteed to increase 
generalization performance??

PCA on 28x28 fashion-MNIST dataset, ZZ feature 
encoding + hardware-efficient variational unitary 
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(Q)NN in depth or in width?
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• Every finite-width NN trained by l2 regularized 

loss functions is approximately a Kernel 

Machine [9]

• Quantum kernel can learn arbitrarily deep 

quantum neural network [3]

• Gaussian kernel can learn any QNN [3]

à Quantum ML based on kernels can be made 

equivalent to training an infinite depth

quantum neural network

à Larger models has been shown empirically to 

work better  
[3] The power of Data in (Q)ML algorithms - https://www.nature.com/articles/s41467-021-22539-9
[9] On the Equivalence between Neural Network and Support Vector Machine - https://arxiv.org/abs/2111.06063

Relation between kernel and DNN in classic world [9] is true also in QC?
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• The dynamics of an infinitely wide neural network (NN) trained by gradient descent can be characterized by Neural 
Tangent Kernel (NTK) [5]

• Neural tangent kernel shows that training neural networks with large hidden layers is equivalent to training an ML model 
with a particular kernel [3]

• Equivalence between NN and a broad family of l2 regularized KMs with finite-width bounds
à every finite-width NN trained by such regularized loss functions is approximately a KM [9]
• Quantum NTK: deep parameterized quantum circuit whose representation power and performance are expected to be 

enhanced. (QNTK is not QSVM)

[3] The power of Data in (Q)ML algorithms - https://www.nature.com/articles/s41467-021-22539-9
[5] Quantum tangent kernel - https://arxiv.org/pdf/2111.02951.pdf [9] On the Equivalence between Neural Network and Support Vector Machine - https://arxiv.org/abs/2111.06063

The Neural Tangent Kernel in High 
Dimensions: Triple Descent and a Multi-Scale 
Theory of Generalization

Relation between kernel and DNN in classic world [9] is true also in QC?
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What about barren plateau??
Noisy-induced, entanglement induced, cost function dependent…

Barren plateaus are large regions of the cost function’s parameter space where the variance of 
the gradient is almost 0 - the cost function landscape is flat. 
This means that a variational circuit initialized in one of these areas will be untrainable using any 
gradient-based algorithm.

The variance of the gradient decreases exponentially with the number of qubits 
Barren plateaus in quantum neural network training landscapes, https://arxiv.org/abs/1803.11173

Avoiding barren plateaus using classical shadows - https://arxiv.org/pdf/2201.08194.pdf

Classical shadow estimation (VQE test)
• efficient diagnosis of the WBP both at the initialization step 

and during the optimization process of variational 
parameters

• entanglement induced BPs and BPs for local cost functions 
are the same

• the algorithm restarts the optimization process with a 
decreased value learning rate

• avoidance of BPs during the optimization using quantum 
Fischer information

• classical shadow protocol and the estimation of observables 
are stable with respect to the addition of a small but finite 
amount of noise
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Conclusion
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• What is the actual power of Representation learning in QML?

• Is there any potential of representation learning for Deep QNN wrt classic DNN?

• Implict vs Explicit is the same for QML and ML?

We are climbing the mountain, placing a flag for each individual 

contribution at the very frontier of (Q)ML 
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Quantum Classifiers for Higgs searches

Quantum GAN, Born Machine

Quantum Kernels

Attention Mechanism
Quantum CNN

VQE, Time evolution, 
Q Reinforc Learn
Q Genetic Evo 
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