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Quantum machine learning offers a promising advantage in extracting information about quan-
tum states, e.g. phase diagram. However, access to training labels is a major bottleneck for any
supervised approach, preventing extracting insights about new physics. In this work, using quantum
convolutional neural networks we overcome this limit with the determination of the phase diagram
of a model where no analytical solutions are known, by training on marginal points of the phase dia-
gram where integrable models are represented. More specifically, we consider the Axial Next Nearest
Neighbor Ising (ANNNI) Hamiltonian, which possesses a ferro-, para-magnetic and antiphase and
we show that the whole phase diagram can be reproduced.

Introduction: Quantum machine learning (QML) [1],
where parametrized quantum circuits [2] act as statis-
tical models, has attract much attention recently, with
applications in the natural sciences [3–8] or in genera-
tive modeling [9–13]. Even if QML models benefit from
high expressivity [14] and demonstrated superiority over
classical models in some specific cases [15, 16], it is still
unclear what kind of advantage could be obtained with
quantum computers [17] in the era of foundation models
[18].

Quantum data, on the other hand, could be a natu-
ral paradigm to apply QML, where quantum advantages
have already been demonstrated [19]. There is hope that
quantum data could be collected via quantum sensors
[20], and eventually linked to quantum computers. In this
work, we emulate the possibility of working with quan-
tum data by constructing them directly on a quantum
device. Specifically, this letter addresses the computa-
tion of the phase diagram of a Hamiltonian H using a
supervised learning approach. Even if similar problems
have already been explored for the binary case [21, 22],
with multiples classes [23] and computed on a supercon-
ducting platform [24], all of these approaches suffer from
a limitation by construction, a bottleneck. In fact, since
labels are needed for the training, and because they are
computed analytically or numerically, these techniques
can only speed up calculations, but cannot extend be-
yond their validated domain. Alternatively, Kottmann
et al. [25] proposed to use anomaly detection (AD), an
unsupervised learning technique, as a way to bypass the
bottleneck of having classical training labels, by finding
structure inside the data set.

This letter numerically demonstrates that supervised
QML can make predictions to regions where analytical
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labels do not exist, after being only trained on easily
computable sub-regions. Moreover, QML only needs
very few training labels to do so, as already pointed
out by Caro et al. [26]. This drastically changes the
perspective, extending QML capabilities to extrapolate
and eventually discover new physics when trained on
well-established simpler models.

The model: We consider the Axial Next Nearest Neigh-
bour Ising (ANNNI) model

H = J

N∑
i=1

σixσ
i+1
x − κσixσi+2

x + hσiz, (1)

where σia are the Pauli matrices acting on the i−th spin,
a = {x, y, z}, and we assume open boundary conditions.
The energy scale of the Hamiltonian is given by the
coupling constant J (without loss of generality we set
J = 1), while the dimensionless parameters κ and h
account for the next-nearest-neighbor interaction and
the transverse magnetic field, respectively. We restrict
ourselves to κ ≥ 0, h ≥ 0 and even N . The difference of
sign between the nearest and next-nearest interactions
leading to a ferro- or antiferro-magnetic exchange in
the system is responsible for the magnetic frustration.
Thence, the ANNNI model offers the possibility to study
the competing mechanism of quantum fluctuations
due to the transverse magnetic field and frustration.
The phase diagram of the quantum model at T = 0
has been studied mainly by renormalization group or
Montecarlo techniques in d dimensions exploiting also
the correspondence with the classical analog in d + 1
dimensions [27–32]. The phase diagram is quite rich
and three phases have been confirmed, separated by
two second-order phase transitions. The first, for low
frustration (κ < 0.5) of the Ising-type separates the
ferromagnetic and the paramagnetic phases along the

line hI(κ) ≈ 1−κ
κ

(
1−

√
1−3κ+4κ2

1−κ

)
. The other one of
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a commensurate-incommensurate type appears between
the paramagnetic phase and an antiphase for values of
the field hC(κ) ≈ 1.05

√
(x− 0.5)(x− 0.1), in the high

frustration sector (κ > 0.5). As usual, the paramagnetic
phase is the disordered one, in contrast with the two
ordered phases: the ferromagnetic and the antiphase
one. In particular, they are different because the former
is characterized by all the spins aligned along the field
direction, and the latter has a four-spin periodicity,
composed of repetitions of two pairs of spins pointing
in opposite directions. The point κ = 0.5 represents a
multicritical point. We mention here that other relevant
lines have been numerically addressed but not con-
firmed. One signaling an infinite-order phase transition
of the Berezinskii–Kosterlitz–Thouless (BKT) type for
hBKT (κ) ≈ 1.05(κ − 0.5), delimiting a floating phase
between the paramagnetic and the antiphase [31] and a
disorder line where the model is exactly solvable known
as the Peschel-Emery (PE) line hPE(κ) ≈ 1

4κ−κ [30, 33].

Variational State Preparation: The purpose of the
Variational Quantum Eigensolver (VQE) [34] is to cal-
culate the ground state energy of a Hamiltonian H(κ, h)
on a quantum computer. Using the Rayleigh-Ritz
variational principle, the VQE minimizes the energy
expectation value of a parametrized wavefunction and
has been successfully applied in quantum chemistry
[35–37], in nuclear physics [38–40] or in frustrated
magnetic systems [41, 42]. Here, we are interested in the
final eigenstates, represented by an ansatz |ψ(θ;κ, h)〉,
to be used as quantum data. Typically, the ansatz is
chosen as an hardware-efficient quantum circuit [35, 43],
which is built with low connectivity and gates that can
be easily run on NISQ devices. For instance, we use
D = 6(9) repetitions of a layer consisting of free rotation
around the y-axis Ry(θ) = e−iθσy/2 and CNOT gates
with linear connectivity CXi,i+1 for 0 ≤ i < N [44],
where H(κ, h) is the ANNNI model from Eq. 1 with
N = 6(12) spins.

Quantum Convolutional Neural Networks (QCNNs):
QCNNs are a class of quantum circuits, inspired by
classical convolutional neural networks (CNN), orig-
inally proposed in [21]. In our implementation, the
QCNN starts with a free rotation layer around the
y-axis, followed by blocks consisting of convolutions,
free rotations, and pooling layers that halve the number
of qubits to k until k = dlog2 (K)e, where K it the
total number of quantum phases. Finally, a fully
connected layer and measurement are performed in
the computational basis. An example with N = 6
qubits is shown in Figure 1 where we have free y-axis

rotations (yellow), R(~θ) =
⊗N

i=1Ry(~θi), two-qubit

convolutions (light green) C(θ) =
⊗2

i=1Ry(θ),

pooling (red) P (~θ, φ, b) = Ry(~θb)Rx(φ) with
b ∈ {0, 1} the value of the measured qubit, and
a two-qubit fully connected (dark green) gate

Figure 1: Circuit architecture: VQE states (blue) are
the input of the Quantum Convolutional Neural
Network composed of free rotations R (yellow),

convolutions C (light green), pooling P (red) and a
fully connected layer F (dark green).

F (~θ(1), ~θ(2)) =
(⊗2

i=1Ry(~θ
(i)
1 )Rx(~θ

(i)
2 )Ry(~θ

(i)
3 )
)

CX1,2.

QCNNs have been shown to be resistant to barren
plateaus [45] due to their distance from low T2-design
and are therefore good candidates for any quantum learn-
ing tasks. The analogy with CNN holds in the quantum
settings since convolution and pooling layers are func-
tions of shared parameters and the reduction of the cir-
cuit’s dimension is guaranteed by the intermediate mea-
surement. Even if mid-circuit measurements are cur-
rently not available on NISQ devices due to a time delay
constraint between the classical and quantum hardware,
a classical postprocessing step is nevertheless able to
replicate their effect [24]. The whole algorithm flow starts
with the QCNN taking as input ground states |ψ(θ;κ, h)〉
from the Hamiltonian family H(κ, h), obtained through
the VQE. The quantum network then outputs the proba-
bility pj(κ, h) of being in one of the K = 3 phases (ferro-,
para-magnetic or antiphase), where pj(κ, h) is computed
as the probability of measuring the state |01〉 , |10〉 , |11〉
on the two output qubits. Since the phase diagram of
the ANNNI model only contains three phases, the state
|00〉 is interpreted as a garbage class.

The training data set consists of the composition of
points from two analytical models derived from the sim-
plification of the physical model used. Specifically, the
integrable Ising model in transverse field in case κ = 0
and the quasi-classical model when h = 0, and there
are no longer quantum fluctuations. We demonstrate
that QCNNs extend its prediction to the all phase dia-
gram when only trained on the marginal model given by
SnX ⊆ {(κ, h) ∈ {0} × [0, 2]} ∪ {(κ, h) ∈ [0, 1]× {0}}. We
consider two types of subsets X ∈ {G,N}, SnG where n
training points are sampled normally around each critical
point and SnU where n data points are drawn uniformly
on both axes. In both cases, we have |Sn| = 2n. The



3

Figure 2: Compression circuit (yellow) and anomaly
score measurement (C) of the ground states of H(κ, h)

obtained through a VQE (blue). The · represent
independent parameters.

QCNN is trained using the cross entropy L loss

L = − 1

|SnX |
∑

(κ,h)∈Sn
X

K∑
j=1

yj(κ, h) log (pj(κ, h)) (2)

between the one-hot classical labels yj(κ, h) and the
predictions on the training region SnX of the phase space.

Anomaly Detection (AD): For the convenience of
the reader, we will recall the unsupervised anomaly
detection (AD) scheme, initially proposed by Kottmann
et al. [25], to draw the phase diagram of the Bose-
Hubbard model. Since it is an unsupervised learning
technique, it bypasses the bottleneck of needing classical
training labels and is, therefore, an alternative to the
approach taken in this letter.

As a first step, an initial state |ψ〉 is chosen in the
data set composed of the ground states of H. Although
there is no formal restriction, it should lie far from any
critical points. A quantum encoder [46] is then trained
to learn to compress |ψ〉 on a N > k-qubit state |φ〉 with
quantum register qC , i.e., to write |ψ〉 = |φ〉⊗ |T 〉, where
the latter is a (N − k)-qubit trash state with register qT .
In practice, an anomaly score based on the Hamming

distance between the trash state |T 〉 to |0〉⊗(N−k), written
as

C =
1

2

∑
j∈qT

(1− 〈Zj〉), (3)

and we make the choice k = N/2. Intuitively, the encoder
compresses similar states, i.e., states in the same phase,
with success but will fail to compress states in a different
phase, leading to a high anomaly score. The encoder, as
proposed in [25], is composed of D layers of independent
Ry(θ) rotations on all qubits and CZi,j gates for i ∈
qC , j ∈ qT and i, j ∈ qT gates. We use a slightly modified
version, with a first layer of Ry(·) individual rotations,
followed by D = 3 layers composed of CXi,j gates for i ∈
qC and j ∈ qT , CZi,j gates with i, j ∈ qT and independent
Rz(·) rotations as displayed in Figure 2 for N = 6.

We highlight a few differences with the supervised
approach. First, the anomaly score measurement is
highly dependent on the choice of the initial state |ψ〉,

and can often lead to phase diagrams without any clear
phase separation. Moreover, there is no quantitative way
to assess the validity of the phase diagram, while with
the QCNN we may evaluate the accuracy on the training
set. Finally, the anomaly score only provided qualitative
results. Hence, only a continuous number (the anomaly
syndrome) is associated with each point, and there is no
canonical way to assign it to a particular phase. On the
other hand, the QCNN outputs the probability of being
in each phase and therefore, the solution is to assign the
most probable phase to it.

Results: At this point, once we have introduced the prob-
lem and defined the techniques used, we can analyze the
quality of the results obtained under ideal conditions with
a quantum simulator.

We study our ability to reconstruct the phase diagram
of the ANNNI model, characterized by a non-trivial dis-
ordered paramagnetic phase, the ordered ferromagnetic
and antiphase one. To test the stability of the proposed
approach, we consider the model with an increasing num-
ber of spins N = 6, 12 and sampling a different number
of points 0 < n ≤ 100 used for the training. By virtue
of the quality of the results, we evaluated the influence
of different sampling of the training points corresponding
to the two physical models that could affect the quality
of the classification. A summary of the results can be
qualitatively seen in Figure 3. In the first row, we have
the phase diagram reconstruction for the ANNNI model
with 6 spins, where the white lines represent the analyti-
cal transition explained above in the model section. The
second line in the figure shows the same for a system with
N = 12 spins.

The first diagram shows the accuracy, computed on
the whole phase space, as a function of the number of
training points per axis n, for the Gaussian X = G
and uniform X = U sampling scheme, where the error
bars correspond to one standard deviation from ten
independent runs. We observe that the accuracy quickly
increases with n, before saturating for n ≥ 14, as argued
in Ref. [26]. The second plot is the phase diagram
obtained with training on n = 14 points, where this
number represents the minimum number of points able
to reach the maximum accuracy. The third plot instead
is the comparison to the unsupervised learning approach
inspired from [25] where the autoencoder is trained on
the single red cross |ψ〉. It is worth noting that although
only one point is sufficient to obtain a qualitatively
good phase diagram, only the approach proposed in this
work with QCNNs allows a quantitative prediction for
the phase. In terms of accuracy of the data points, the
error as a difference between the VQE outcome and
the numerical solution is on average below 1% on the
transition zones while there is almost no error elsewhere.
Colour shades represent the continuous probability
distribution of the QCNN for our multiclass classifier as
a probability mixture, where spare points are given by
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Figure 3: Quantum Phases Classification. Panel (a) shows the classification accuracy of the QCNN as a function of
the number of training points per axis n, for the Gaussian (blue) and Uniform sampling (red), (b) displays the phase

diagram predicted by the QCNN trained on S14U (red dots) where the color represents the probability mixture of
being in one of the three phases, while (c) shows the anomaly score for a N = 6 spins systems trained on the initial
state |ψ〉 (red cross). The panels (d), (e) and (f) are similar but for N = 12 spins. The solid white lines are hI(κ) for

κ < 0.5 and hC(κ) for κ > 0.5

quantum fluctuations.

Conclusion: This letter addresses the computation
of the phase diagram of a non-integrable model, by
training a QCNN on the limiting integrable regions of
the considered ANNNI model. The numerical simula-
tions suggest that QCNNs can carry this task with more
than 95% accuracy, using only 2n = 28 quantum data
points on the two axes of the phase space. The accuracy
of the QCNN quickly increases to reach its maximum as
a function of the number of training points, suggesting
that QCNNs can generalise from a few data points.
Moreover, the performance of the algorithm seems to
improve with the system’s size. Hence, the training
loss is smaller for N = 12 than for N = 6 and the
predicted boundaries in the phase space are also clearer,
meaning that the QCNN is more confident. Even if
this could be caused by the reduction of boundary or
finite-size effects, it hints towards scalability of the
proposed model, provided the availability of quantum

data. However, being a supervised method, the QCNN
is not able to detect phases that are not present in the
training set SnX , i.e., the boundaries, such as the BKT
phase transition and the PE line. Future work should
be performed in this direction, by either affording O(1)
training points inside these unrepresented phases or
mixing the QCNN with the unsupervised approach.
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