Physics searches with quantum classifiers and anomaly detection at the LHC

CERN openlab Technical Workshop, 23 March 2022

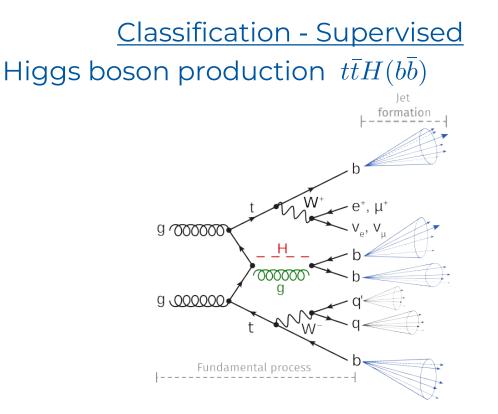
Vasilis Belis (PhD at ETH, CERN)

Collaborators:

ETH: P. Odagiu, F. Reiter, G. Dissertori. CERN: K. Wozniak, M. Pierini, M. Grossi, S. Vallecorsa. IBM Zurich: P. Barkoutsos, I. Tavernelli.

ETH zürich

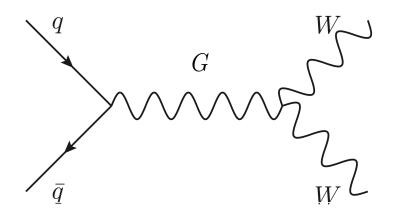
Examples of studied physics processes



Model-dependent search: New physics signature known.

$$n^{\text{features}} = \underbrace{7 \times 8}_{\text{jets}} + \underbrace{1 \times 7}_{\text{lepton}} + \underbrace{1 \times 4}_{\text{MET}} = 67$$

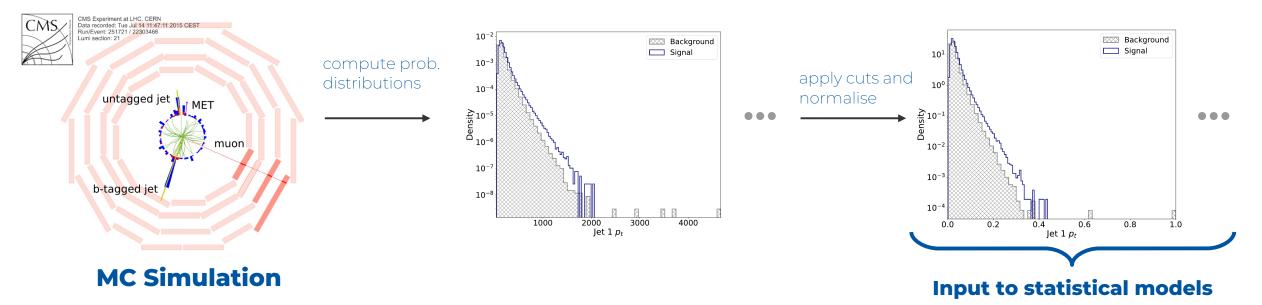
<u>Anomaly detection – (Un)Supervised</u> Graviton production (mJJ spectrum)



Model-agnostic search: New physics signature unknown.

$$n^{\text{features}} = \underbrace{100}_{\text{particles}} \times \underbrace{3}_{\text{features}} = 300$$

Workflow and motivation

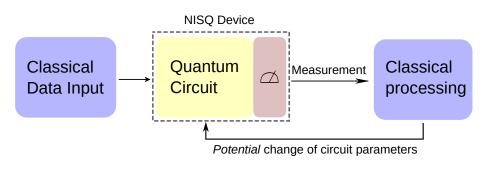


Why quantum machine learning for particle physics?

Fundamental motivation: can quantum models utilise the quantum correlations inherent in HEP data leading to performance advantages?

- Find inductive bias based on prior knowledge on the data generation (quantum process for HEP data).
- If the bias can be constructed and is classically difficult to simulate → quantum advantage.

Hybrid Quantum-Classical algorithms



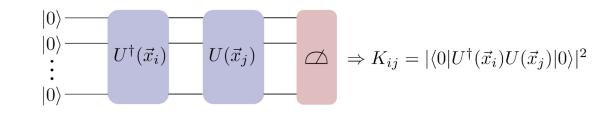
Noisy Intermediate Scale Quantum (NISQ) devices:

- Circuit width: limited number of qubits (superconducting qubits at IBM up to 127).

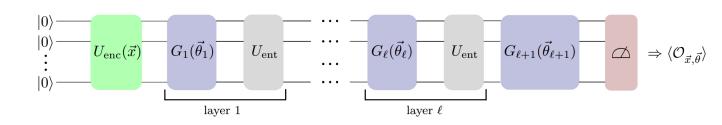
- Circuit depth: limited number of operations per qubit (small decoherence times).

QML models for classification (blueprints)

Quantum Support Vector Machines (QSVM)



Variational Quantum Circuits (VQC) Quantum "Neural Networks"

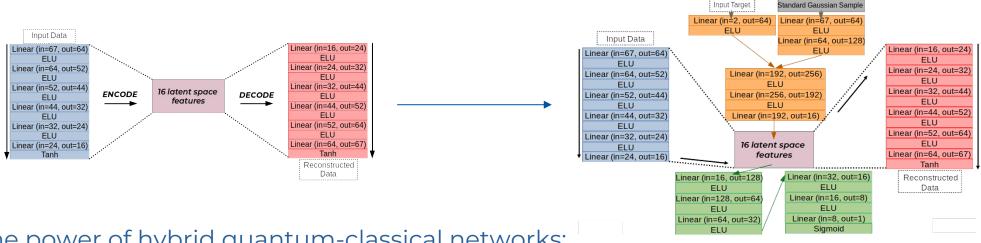


To accommodate for NISQ limitations, feature reduction is needed: (Hybrid) Autoencoder models.

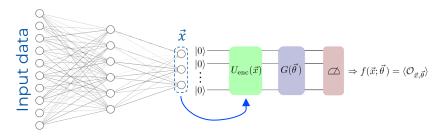
Advanced feature reduction techniques

Goal: Reduce the number of features while preserving the discrimination power of the original physical features.

- Investigated the power of conventional ML dimensionality reduction techniques (e.g., manifold learning).
- Conclusion: Deep Learning techniques based on (Hybrid) Autoencoders (physics aware) are superior.



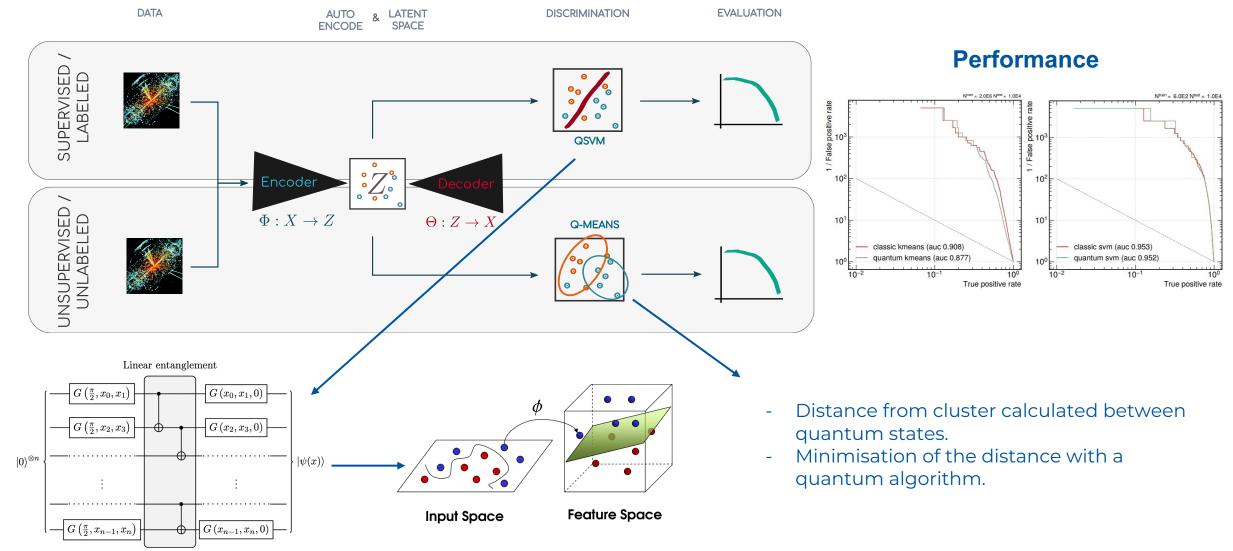
Assess the power of hybrid quantum-classical networks:



Able to match state-of-the art performance on ideal quantum simulations:

- QSVM on the latent space of particle physics events.

Identifying new physics (graviton) via anomaly detection



Conclusions and outlook

Summary:

- State-of-the-art performance of the developed hybrid data compression models.
- Feature reduction is crucial, training classical + quantum at the same time yields better results (hybrid VQC) than step-wise training.

Ongoing/Future work:

- Investigate other physics signatures and processes.
- Running the models on real hardware and assess the need for error mitigation.
- Anomaly detection (AD) for model independent searches of new physics using kernel-based models.
- Quantum branches (QSVM+VQC) on developed networks for feature reduction and AD.

Thank you!

More information: *Higgs analysis with quantum classifiers*, EPJ Web Conf., 251 (2021) 03070, https://doi.org/10.1051/epjconf/202125103070, pre-print: arXiv:2104.07692.

In preparation:

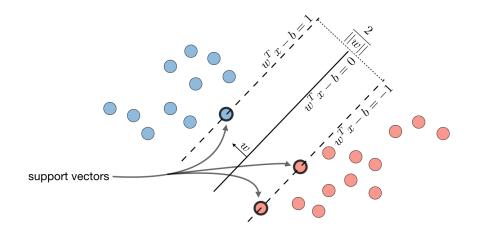
- Classification and anomaly detection in the latent space of high energy physics events.
- Hybrid Autoencoder and VQC studies for optimal feature reduction.

References

- [1] Sjöstrand T et al. 2015 Comput. Phys. Commun. 191 159–177 (Preprint 1410.3012)
- [2] de Favereau J et al. (DELPHES 3) 2014 JHEP 02 057 (Preprint 1307.6346)
- [3] Randall L and Sundrum R 1999 Phys. Rev. Lett. 83 3370 (Preprint hep-ph/9905221)
- [4] Fan H, Su H and Guibas L 2017 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) p 2463 (Preprint 1612.00603)
- [5] Lloyd S, Mohseni M and Rebentrost P 2013 Quantum algorithms for supervised and unsupervised machine learning (*Preprint* 1307.0411)
- [6] Aïmeur E, Brassard G and Gambs S 2006 Advances in Artificial Intelligence ed Lamontagne L and Marchand M (Berlin, Heidelberg: Springer Berlin Heidelberg) pp 431–442 ISBN 978-3-540-34630-2
- [7] Durr C and Hoyer P 1999 A quantum algorithm for finding the minimum (Preprint quant-ph/9607014)
- [8] Boyer M, Brassard G, Høyer P and Tapp A 1998 Fortschritte der Physik 46 493-505 ISSN 1521-3978
- [9] Grover L K 1996 A fast quantum mechanical algorithm for database search (Preprint quant-ph/9605043)
- [10] Boser B E, Guyon I M and Vapnik V N 1992 Proceedings of the fifth annual workshop on Computational learning theory
- [11] Schuld M and Killoran N 2019 Physical Review Letters 122 ISSN 1079-7114 URL http://dx.doi.org/10.1103/PhysRevLett.122.040504
- [12] Havlíček V, Córcoles A, Temme K and et al 2019 Nature 567 209–212
- [13] LaRose R and Coyle B 2020 Phys. Rev. A **102**(3) 032420
- [14] Belis V, González-Castillo S, Reissel C, Vallecorsa S, Combarro E, Dissertori G and Reiter F 2021 EPJ Web Conf. 251 03070

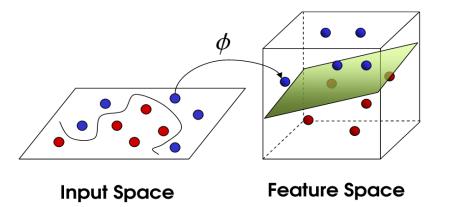
BACK-UP

Support Vector Machines



SVM objective function is equivalent to (dual Lagrangian):

$$\begin{array}{ll} \mbox{maximize} & L(c_1 \dots c_n) = \sum_{i=1}^n c_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n y_i c_i (\vec{x}_i \cdot \vec{x}_j) y_j c_j \\ \mbox{subject to} & \sum_{i=1}^n c_i y_i = 0, \mbox{ and } 0 \leq c_i \leq C \mbox{ for all } i. \end{array}$$

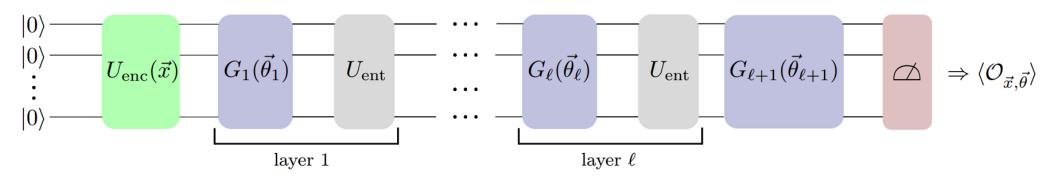


 $\text{Kernel trick:} \quad (\vec{x}_i \cdot \vec{x}_j) \mapsto k(\vec{x}_i, \vec{x}_j) \coloneqq \phi(\vec{x}_i) \cdot \phi(\vec{x}_j).$

Make the kernel quantum:

$$|0\rangle = |0\rangle = U^{\dagger}(\vec{x}_{i}) = U(\vec{x}_{j}) = \Delta \Rightarrow K_{ij} = |\langle 0|U^{\dagger}(\vec{x}_{i})U(\vec{x}_{j})|0\rangle|^{2}$$
$$|0\rangle = |\langle 0|U^{\dagger}(\vec{x}_{i})U(\vec{x}_{j})|0\rangle|^{2}$$

Variational Quantum Circuits

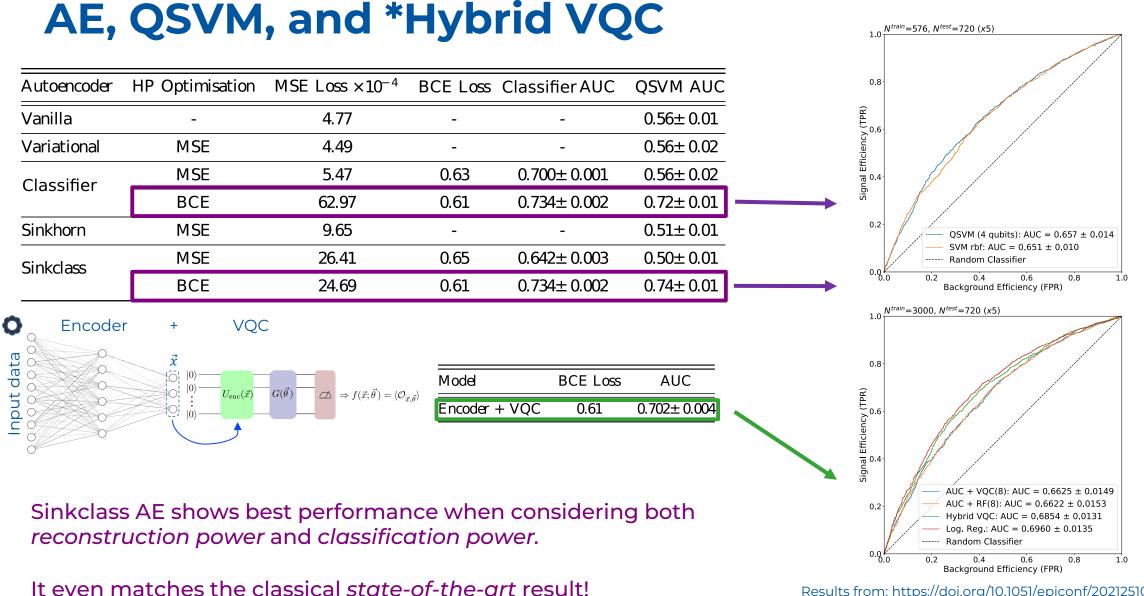


- Data embedding circuit (feature map) here is fixed.
- Layers of parametrised quantum gates → trainable parameters.
- Output of the model \rightarrow expectation value of an observable on the prepared state $|\psi(\vec{x}, \vec{\theta})\rangle$ e.g. measure the first qubit on the computational basis

$$\mathcal{O} = \sigma_z \otimes \mathbb{1} \otimes \mathbb{1} \cdots \otimes \mathbb{1},$$

$$f(\vec{x},\vec{\theta}) = \langle \psi(\vec{x},\vec{\theta}) | \mathcal{O} | \psi(\vec{x},\vec{\theta}) \rangle \equiv \langle \psi(\vec{x}) | G^{\dagger}(\vec{\theta}) \mathcal{O}G(\vec{\theta}) | \psi(\vec{x}) \rangle \equiv \langle \mathcal{O} \rangle_{\vec{x},\vec{\theta}}.$$

• Classification: if $\langle 0 \rangle_{\vec{x},\vec{\theta}} > 0 \rightarrow$ signal, otherwise background.



Results from: https://doi.org/10.1051/epjconf/202125103070