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Abstract: We characterize for the first time the performances of IBM quantum chips as quantum
batteries, specifically addressing the single-qubit Armonk processor. By exploiting the Pulse access
enabled to some of the IBM Quantum processors via the Qiskit package, we investigate the advantages
and limitations of different profiles for classical drives used to charge these miniaturized batteries,
establishing the optimal compromise between charging time and stored energy. Moreover, we
consider the role played by various possible initial conditions on the functioning of the quantum
batteries. As the main result of our analysis, we observe that unavoidable errors occurring in the
initialization phase of the qubit, which can be detrimental for quantum computing applications, only
marginally affect energy transfer and storage. This can lead counter-intuitively to improvements of
the performances. This is a strong indication of the fact that IBM quantum devices are already in the
proper range of parameters to be considered as good and stable quantum batteries comparable to
state-of-the-art devices recently discussed in the literature.

Keywords: quantum batteries; time-dependent quantum transport; quantum technology

1. Introduction

Quantum batteries (QBs) recently emerged as a fast-growing and very active field of
research in the domain of quantum technologies [1]. The idea behind these miniaturized
devices for energy storage represents a radical change of perspective in the framework
of energy manipulation with respect to the electrochemical principles developed in the
eighteenth and nineteenth centuries, which are still at the core of modern technology [2,3].
Indeed, here, genuinely non-classical features such as quantum superposition, entangle-
ment, and many-body collective behaviors can be exploited in order to outperform their
classical counterparts in terms of stored energy, charging time, average charging power
and extractable work [4]. These quantities are the main figures of merits to look at in order
to characterize and optimize the performances of these kind of devices. From the practical
point of view, quantum batteries could be used in the near future to supply in a fast and
controlled way the energy needed for the functioning of more complex quantum devices
and sensors, opening the way to new and fascinating technological developments.

Starting from seminal ideas developed in Ref. [5], the theoretical investigations in this
domain have been at first characterized by the influence of theorems mediated by quantum
information [6–9]. During the years, the studies progressively moved toward more exper-
imentally oriented proposals. They addressed set-ups conveniently designed in such a
way to be easily implemented on existing quantum computing platforms such as arrays of
artificial atoms [10–16] and systems for cavity and circuit quantum electrodynamics [17,18].
This latter class of set-ups has been also proposed as support for the realization of quantum
supercapacitors where the energy is stored by exploiting radiation-induced non-classical
arrangement of the electron charge [19].
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Very remarkably, the first experimental evidence of a QB has been reported less than
one year ago in a system where fluorescent organic molecules play the role of two-level
systems embedded in a microcavity [20]. Even more recently, QBs realized with transmon
qubits [21] and quantum dots [22] have been reported, further testifying the great ferment
around this topic.

The majority of the considered approaches for QBs are based on two-level systems
(qubits) promoted from the ground to the excited state by means of the action of another
system playing the role of a charger [23,24]. This latter element can be genuinely quantum,
such as photons trapped into a cavity, or more simply a classical time-dependent drive
directly applied to the qubit [14,25,26]. As stated above, the efficiency of this kind of
charging processes is characterized in terms of figures of merits such as the energy stored
into the QB, the charging time required to reach its maximum and the average charging
power, which is the energy stored in a given time [6].

IBM quantum devices [27] offer the unique opportunity to simulate quantum systems
under controlled conditions, leading to an exponentially increasing number of scientific
papers covering various branches of research. The following are some examples that
go from quantum chemistry and material sciences [28,29] to the analysis of molecular
magnetic clusters and spin–spin dynamical correlation functions [30], up to quantum
field theories [31,32], high energy physics [33,34] and dark matter [35]. Lots of different
publications are defined within real use cases belonging to different industries, including
finance, material science and optimization [36–38].

An important step forward in the direction of addressing quantum dynamics has been
represented by the implementation of the Pulse tool included in the Qiskit package [39],
which opened the way to the possibility to reach an unprecedented level of control over
the form and the relevant parameters of a classical drive applied to quantum systems.

The aim of this paper is to realize the first simulation of a classically driven QB
applying different controlled pulses on an IBM quantum device. We will focus on the
simplest possible machine, the Armonk quantum processor, made by a single transmon
qubit. After a proper calibration of the data, we will characterize the charging profile of the
QB as a function of the time integral of the envelop function of the pulse. We will determine
the constraints on the form of the pulse in order to obtain an universal charging curve,
and we will establish the minimum reachable charging time. Without implementing any
ad hoc optimization procedure, we observe performances in terms of charging time and
stored energy compatible with state-of-the-art experiments in the domain [21]. Moreover,
we observe that initialization errors ubiquitously present in the Noisy Intermediate-Scale
Quantum devices [40], which can be detrimental in a quantum computation perspective,
can lead to an improvement of the performances of these set-ups as a QB.

The present paper is organized as follows. In Section 2, we investigate the model
of a qubit coupled with a time-dependent drive as a proper description of the Armonk
IBM quantum processor subject to the action of the Pulse tool. The calibration of the
system and the analysis of the data provided by the IBM interface are reported in Section 3.
The discussions concerning the universality of the charging curve, the possible technical
constraints on the suitable forms of the pulses, the achievable minimal charging time
and the role played by different initial conditions are reported in Section 4. Section 5 is
devoted to the conclusions. Finally, a table at the end of the paper summarizes the relevant
quantities involved in our model for the QB.

2. Model

We consider a superconducting qubit in the transmon regime [41]. In the working
conditions investigated in this paper, it can be seen as an effective two-level system driven
in time by a classical pulse. Its Hamiltonian reads (h̄ = 1)
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H = HQB + HC (1)

=
∆
2
(1− σz) + g f (t) cos (ωt)σx (2)

where the first term (HQB) represents the free Hamiltonian of a QB with a level spacing ∆
between the ground state |0〉 and the excited state |1〉, while the second term (HC) describes
the classical charging of the QB itself due to the application of a time-dependent drive
compatible with the Qiskit Pulse tool [39]. In the above equation, with σx,z, we indicate the
Pauli matrices along the x and z direction, respectively. Notice that one has

σz|0〉 = |0〉 (3)

σz|1〉 = −|1〉. (4)

With f (t), we denote a time-dependent adimensional envelop function with maxi-
mum amplitude equal to one, whose form will be specified in the following. It is further
modulated by a cosine function with frequency ω. Moreover, g represents the coupling
between the QB and the classical drive. The aim of this section is to study the dynamics of
this system starting from the generic initial wave-function at time t = 0

|Ψ(0)〉 = α|0〉+ β|1〉 (5)

with α and β complex parameters satisfying |α|2 + |β|2 = 1.
Typically, the IBM quantum machines are built in such a way that ∆� g. In particular,

for the Armonk quantum processor used in this work, one has ∆ ≈ 31.238 GHz and
g ≈ 0.105 GHz. Under this condition, for arbitrary values of driving frequency ω, it is not
possible to achieve a transition from |0〉 to |1〉, namely a charging of the QB [14].

This issue can be overcome by properly tuning the systems in the perfectly resonant
case ∆ = ω. The reason for the peculiarity of this case can be better appreciated moving to
a rotating frame, namely by applying the time-dependent rotation

S(t) = e−i ∆
2 tσz (6)

to the Hamiltonian in Equation (2) in such a way to obtain

H′ = SHS† − iS
dS†

dt
, (7)

where the time dependence of the operators has been omitted for notational convenience.
By further considering the rotating wave approximation [42], which is very well justified
under the conditions of resonance and small coupling we are considering, one can write

H′ ≈ g
2

f (t)σx +
∆
2

, (8)

where the constant term plays no role in the dynamics and will be neglected in the following.
The above expressions for the rotated Hamiltonian together with the fact that the

considered rotation does not affect the initial state of the system, namely

|Ψ′(0)〉 = S(0)|Ψ(0)〉 = |Ψ(0)〉, (9)

allows to analytically solve the dynamics of the considered qubit. Indeed, one can introduce
the eigenstates of the σx operator

|±〉 = 1√
2
(|0〉 ± |1) (10)
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in such a way that the initial wave-function can be written as

|Ψ′(0)〉 =

(
α + β√

2

)
|+〉+

(
α− β√

2

)
|−〉 (11)

= C+(0)|+〉+ C−(0)|−〉. (12)

On this basis, the time evolution of the coefficients C± satisfies

dC±
dt

= ∓i
g
2

f (t)C±(t) (13)

and consequently
|Ψ′(t)〉 = C+(t)|+〉+ C−(t)|−〉, (14)

with
C±(t) = C±(0)e∓i g

2
∫ t

0 f (τ)dτ . (15)

In the following, we will focus on a situation, relevant for the considered quantum
simulations, where the state of the system is measured at a given time t = tm such that

C±(tm) = C±(0)e∓i θ(tm)
2 (16)

with

θ(tm) = g
∫ tm

0
f (τ)dτ. (17)

Going back to the original basis, one obtains directly

|Ψ(tm)〉 = S†(tm)|Ψ′(tm)〉 (18)

= eiϕ(tm)

[
α cos

θ(tm)

2
− iβ sin

θ(tm)

2

]
|0〉

+ e−iϕ(tm)

[
β cos

θ(tm)

2
− iα sin

θ(tm)

2

]
|1〉 (19)

with
ϕ(tm) =

∆
2

tm. (20)

According to this analysis, the energy stored into the QB at the measurement time (tm)
is given by [23]

E(tm) =
∆
2
〈Ψ(tm)|(1− σz)|Ψ(tm)〉 (21)

= ∆〈Ψ(tm)|1〉〈1|Ψ(tm)〉 (22)

= ∆|〈Ψ(tm)|1〉|2 (23)

= ∆P1(θ(tm)) (24)

where the last line indicates the probability to find the QB in the excited state (|1〉) when
the measurement is carried out. In the following, we will omit the dependence on tm for
notation convenience.

Taking into account the reparametrization

α =
√

a (25)

β =
√

1− ae−iφ, (26)
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with a and φ real numbers, one can finally write

E(a, φ, θ) = ∆
[

a sin2 θ

2
+ 2
√

a
√

1− a sin φ sin
θ

2
cos

θ

2
+ (1− a) cos2 θ

2

]
, (27)

where we have made explicit the dependence of the stored energy on the relevant pa-
rameters characterizing the initial wave-function of the qubit and the phase associated to
the envelop function of the applied pulse. In the following, the results of the simulations
carried out as a function of θ will be fitted by means of Equation (27) in order to extract the
values of the parameters a and φ. This will allow us to reconstruct the initial state of the QB
and characterize its performances in terms of stored energy. Notice that a similar analysis
has been carried out very recently in an experimental work devoted to the characterization
of a semiconducting quantum dot as a QB [22].

3. Calibration

Before entering into the details of the QB charging, we need to discuss the nature of
the data returned by the IBM platform and the way to analyze them. The measurement of
the state of a given qubit after the application of an external drive is done through a readout
in the so-called dispersive regime [43]. Here, a harmonic oscillator (resonator) is weakly
coupled to the QB. The system is then described by the Jaynes–Cummings Hamiltonian [42]

HRO = HQB + ωrb†b + λ
(

b†σ− + bσ+
)

(28)

where λ indicates the strength of the matter–radiation dipolar coupling and with b†/b and
σ± ladder operators for the harmonic oscillator and the effective spin associated to the QB,
respectively. When the two parts of the system are kept far from resonance, namely under
the condition λ� |∆−ωr|, it is possible to perform a Schrieffer–Wolff transformation and
to expand Equation (28) up to the second order in the coupling, obtaining the effective
Hamiltonian [42]

He f f = HQB + ωrb†b− 2λ2

|∆−ωr|
σz

(
b†b +

1
2

)
. (29)

This leads to a shift in the frequency of the oscillator, which depends on the state of
the QB.

Under these conditions, a monochromatic microwave with frequency Ω applied to the
resonator is modified in such a way that

cos Ωt→ A cos(Ωt + χ). (30)

Namely, it acquires a different amplitude A and phase χ. These quantities depend on
the properties of the resonator and consequently are unambiguously related to the state
of the considered qubit. Getting rid of the time dependence of the signal and taking into
account the complex representation of the transmitted wave, one can write

Aeiχ = I + iQ, (31)

with I and Q real numbers.
Every measurement of the qubit state is then reported as a point in the (I, Q) plane [44].

In order to accumulate proper statistics, the machine performs multiple runs (1024 in default
settings). They are typically very scattered, requiring a calibration to extract meaningful
information from them. Focusing now on the specific case of the Armonk single-qubit
device, one has that at the beginning of every run, it is initialized to the ground state, so as
a first thing, we have characterized the ground state |0〉 of the system measuring it just after
the initialization of the machine. Then, the excited state |1〉 has been obtained initializing



Batteries 2022, 8, 43 6 of 13

the Armonk qubit in |0〉 and applying a built-in pulse with θ = π (see Equation (17)) of
the form

f (t) =
√

π

2
1

gσ
e−

(t−tm/2)2

2σ2 (32)

with standard deviation σ = tm/8, being tm = 600 ns the measuring time. A typical
distribution of the points in the (I, Q) plane associated to the ground and excited state is
reported in the left panel of Figure 1.

14 12 10 8 6 4 2
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20
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|0
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Figure 1. (Color online). Left panel. Example of data distribution associated to the measurements
of the state |0〉 (blue dots) and |1〉 (red dots) in the (I, Q) plane (in arbitrary units) of the Armonk
single-qubit device. Big black dots indicate the centers of the two distributions, while the black line
separates them. Notice that despite the distortion due to the aspect ratio of the plot, this line is
perpendicular to the segment connecting the two centers. The efficiency of the considered separation
is roughly 97.4% for the ground state and 92.7% for the excited state. Right panel. Example of a
distribution associated to the measurement of a state with θ = π/2 (green dots). The distribution
presents now two separated lobes, one in each sector. The energy stored in the system is related to the
fraction of the dots composing the lobe in the |1〉 sector with respect to the total runs. In the present
case, this is given by P1 ≈ 0.567. For each state shown in the plot, we have considered 1024 runs.

In order to discriminate between the two states of the system, we have written a
Python routine able to determine the center of the relative distributions (big black dots)
and identify the line perpendicular to the segment connecting them and passing through
its middle point. This approach implicitly assumes that both distributions have the same
spread. This line divides the (I, Q) plane into two parts that we can identify as the |0〉
and the |1〉 sector, respectively. It is worth noting that due to the intrinsic errors affecting
the machine, a small fraction (few percent) of the blue dots corresponding to ground-state
measurement fall into the part of the plane associated to the excited state and vice versa.
The evaluation of these errors, as well as a reasonable hypothesis of their origin, will be
relevant points of the analysis of the results.

According to the picture discussed above, the energy stored in the Armonk qubit seen
as a QB, proportional to the probability for a state to be measured in |1〉 after the application
of a generical pulse with 0 ≤ θ ≤ π (see Equation (24)), can be evaluated directly as the
ratio of the number of points falling in the |1〉 sector with respect to total runs performed
by the machine (see the right panel of Figure 1 for an example).

4. Results
4.1. Universal Charging Behavior and Technical Constraints on the Pulses

In this section, we consider the charging curve of the Armonk QB for different profiles
of the time-dependent envelop function f (t). On a very general ground, we observe that
Equation (27) does not explicitly depend on the functional form of this envelop but only
on the parameter θ, which is proportional to its integral up to the measurement time (see
Equation (17)). From the mathematical point of view, there are infinite possible functions
f (t) showing the same value of θ for a fixed measurement time tm. Therefore, we expect
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this universal behavior to emerge in the measurements. Moreover, we attribute deviations
with respect to the ideal curve

E(1, φ, θ) = ∆ sin2 θ

2
, (33)

corresponding to the perfect initialization in the ground state, to errors occurring in
this phase.

The results concerning Gaussian profiles of the form

f (t) = N e−
(t−tm/2)2

2σ2 (34)

are reported in Figure 2. Due to the overall constraint given by Equation (17), the amplitude
N and the standard deviation σ cannot be tuned independently. Therefore, we have com-
pared two possible complementary approaches. In the left panel, generalizing what was
calculated in Equation (32), the standard deviation σ has been kept fixed to a convenient
fraction of the measurement time tm, while the amplitude N = θ/(

√
2πgσ) (always satis-

fyingN < 1) has been varied in order to return the proper value of θ. In the right panel, we
proceeded in the opposite way, keeping fixed the amplitude to the maximum possible value
N = 1 and varying the standard deviation according to σ = θ/(

√
2πgN ). It is evident

that in both cases, the data depart from the ideal behavior of Equation (33). Moreover,
despite being equivalent from the mathematical point of view, these two approaches lead
to different results. This is due to the fact that the second approach is affected by a technical
problem. For the considered values of θ, the support of f (t) is reasonably different from
zero only in a narrow time window. Due to the fact that the Pulse tool discretizes the
signals with a minimum time step of δ = 0.222 ns, this peaked envelop function is strongly
affected by this and is characterized by an effective area smaller with respect to what was
expected. Even if this error can be mitigated by considering lower amplitudes N , the first
approach was more suitable for our purposes with different choices of standard deviation
satisfying σ < tm/5 (not shown), leading to almost superposing distributions of the points.
This latter condition is justified by the need to minimize the error made by cutting the
envelop function at a finite measurement time tm. While this error is typically under control
for fast decaying envelop functions such as the Gaussian considered here, broader profiles
such as the Lorentzian one require to be properly adjusted in order to compensate for this
missing-tail effect and recover the predicted universal behavior.

0 /4 /2 3 /4
0.0

0.2

0.4

0.6

0.8

1.0

E/

0 /4 /2 3 /4
0.0

0.2

0.4

0.6

0.8

1.0

E/

Figure 2. (Color online). Energy stored in the QB (in units of ∆) as a function of the area θ. The
black curves correspond to the ideal charging profile with a = 1 (see Equation (33)). The left panel
shows the charging achieved using a Gaussian pulse with fixed standard deviation σ = tm/8, being
tm = 600 ns the measurement time, and amplitude N = θ/(

√
2πgσ). The right panel shows the

charging due to a Gaussian pulse with fixed amplitude equal to N = 1 and adjustable standard
deviation σ = θ/(

√
2πgN ). The vertical spread of the points is due to the fact that we have

considered 20 measurements for each value of θ.
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The above discussion indicates that a not too narrow and fast-decreasing envelop
function represents the better choice for a pulse leading to a suitable charging of the
considered QB. Once these requirements are properly fulfilled, it is also possible to reduce
the charging time with respect to the value reported in Figure 2. This point, together with a
fit of the data in order to determine the actual initial state of the system, will be investigated
in the following.

4.2. Best Fit of the Data and Characterization of the QB Performances

In Figure 3, we consider curves obtained averaging over N = 20 measurements
carried out with the same form of the envelop function f (t). The first one (left panel) is
achieved with a measurement time t(1)m = 600 ns (default value for the Armonk machine),
while the second with t(2)m = 135 ns, which is a value still consistent with the pulse con-
straints discussed above. Through best fit of the reported data according to Equation (27),
one obtains

a(1) = 0.981± 0.003 (35)

φ(1) = 0.45± 0.06 (36)

in the first case and

a(2) = 0.964± 0.003 (37)

φ(2) = 0.30± 0.06 (38)

in the second. Notice that measurements carried out at an intermediate time t(2)m < tm < t(1)m
(not shown) are compatible to what was observed in the two extreme cases. Conversely, for
tm < t(2)m , the effects associated to the previously described discretization of the pulse lead
to a less efficient charging. Moreover, the results are not strongly affected by the numbers of
measurements as long as N ≥ 10. Here, we have considered N = 20 as a good compromise
between the quality of the reported results and the time required to realize every point in
the plots.
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E/

a = 0.981 ± 0.003, = 0.45 ± 0.06
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a = 0.964 ± 0.003, = 0.30 ± 0.04

Figure 3. (Color online). Best fit of the energy stored into the QB (in units of ∆) as a function of θ

(black curves). Data correspond to Gaussian pulses with σ = tm/8, being tm = 600 ns (blue curve in
the left panel) and tm = 135 ns (red curve in the right panels). Every point is obtained averaging over
20 different measurements (see Figure 2), and the bars take into account the standard error associated
to this average.

These data indicate that the Armonk qubit behaves as a QB with non-zero, but limited,
initial energy which can be almost completely charged with maximum stored energy E(1/2)

max

exceeding 95% in both cases. This corresponds to a maximal stored energy of E(1/2)
max ≈

20 µeV (≈200 mK in temperature units). Moreover, the second case is characterized by a
greater average charging power, namely the energy stored with respect to the charging
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time (which is necessary lower with respect to the measured time tm) [23]. In addition,
the observed charging time and stored energy is comparable with the recently reported
state-of-the-art measurements on the first charging step of a three-level transmon QB [21].
Considering even lower values of the measurement time, and consequently of the standard
deviation of the Gaussian pulse, the data show a progressively stronger deviation from the
predicted universal charging curve as a consequence of the emergence of the previously
described technical limitations.

It is worth noticing that the reported measurement (and consequently charging) times
are substantially shorter with respect to both the decay (T1 = 165 µs) and dephasing
(T2 = 214 µs) time reported for the machine. According to this, once a pulse with a given
value of θ is applied to the device, the corresponding energy stays confined into the QB
for a time of the order of T1 as long as no other pulse is applied. This represents a very
strong indication of the fact that IBM quantum machines are already, without any ad hoc
optimizations, in the proper range of parameters to be considered as quite efficient and
stable QBs.

To conclude this section, we observe that the fluctuating phase acquired by the state
at the level of the initialization, which is a major problem in a quantum computation
perspective, can lead counter-intuitively to an improvement of the device as a QB. Indeed,
the measured value of phase parameter φ is positive in the majority of the investigated
cases. According to this, the value of θ at which the maximum charge is reached can occur
for a value θmax < π, requiring a lower effective area of the envelop function to be achieved
with respect to the case of a thermal state with the same initial probability of being in the
ground state, which is equivalent to the results of Equation (27) at φ = 0. This leads to an
improvement of the performance of the QB. The effects of an imperfect initialization are
even more evident by considering more general initial conditions, which are discussed in
the following.

4.3. More General Initial Conditions

The initialization error discussed above can have an impact on the functioning of
the QB also when more general quantum superposition states are considered as initial
conditions. These states can be obtained starting from the ground state and applying a
proper built-in unitary operator. As an example, in the following, we will consider the
two operators

U =
1√
2

(
1 1
1 −1

)
(39)

and

V =
1√
2

(
1 +i
−i −1

)
. (40)

For an ideal QB, the energy stored should be

E
(

1
2

, 0, θ

)
=

∆
2

(41)

in the first case, showing no charging/discharging dynamics due to the fact that the action
of the drive only induces the rotation of this state on the equator of the Bloch sphere, and

E
(

1
2

,
π

2
, θ

)
=

∆
2
(1 + sin θ) (42)

in the second case, requiring half of the energy (∆/2) and half of the envelop area (θ/2) to
realize a complete charging.

However, both the initialization and the application of a unitary operator are intrinsi-
cally affected by errors, as can be seen from the corresponding measurements reported in
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Figure 4. Again, we observe that these errors can affect the functioning of the Armonk qubit
as a QB. Indeed, even if limited, the first state (left panel) shows an unexpected charging
dynamics, while for the second state, we observe a charging curve quite close to the ideal
one, even if the maximum charging is not reached. Both these behaviors can be explained
with the fact that the actual initial states are different with respect to what expected. In
particular, we have

a(U) = 0.463± 0.005 (43)

φ(U) = 0.174± 0.009 (44)

and

a(V) = 0.488± 0.004 (45)

φ(V) = 1.035± 0.009. (46)
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Figure 4. (Color online). Best fit of the energy stored into the QB (in units of ∆) as a function of
θ (black curves). Data correspond to Gaussian pulses applied after the action of a unitary matrix
U (blue curve in the left panel) or V (red curve in the right panels) over the ground state of the
system. These transformations are defined in Equations (39) and (40) of the main text, respectively.
Every point is obtained averaging over 10 different measurements, and the bars take into account
the standard error associated to this average. In both cases, the measurement time has been fixed at
tm = 600 ns.

According to this, while the values of the amplitude are not very far from the ideal
condition (few percent mismatch), the phase is again strongly affected by fluctuations.

5. Conclusions

In the present paper, we have investigated the performances of the IBM Armonk single
qubit in terms of energy storage and charging time by exploiting the Pulse tool included
in the Qiskit package. This represents, as far as we know, the first actual simulation of a
quantum battery using these kinds of quantum devices.

With our analysis, we have demonstrated that by reasonably choosing a not very
narrow and fast decaying classical drive, it is possible to achieve very good energy storage
(exceeding 95%) in a very short time (less then 135 ns) with respect to the typical relaxation
and dephasing time of the considered device. These performances are comparable with
what was observed in very recent state-of-the-art experiments realized using superconduct-
ing qubits or semiconducting quantum dots. This indicates that the Armonk qubit, together
with an analogous machine in the same range of parameters, is already well designed to be
seen as good and stable quantum batteries.

Remarkably enough, their performances can be further improved by errors in the
initialization state, such as phase fluctuations, which conversely have a negative impact on
the functioning of the device as qubit for quantum computation proposals.
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We think that this timely analysis could open new and fascinating perspectives in
the fast developing field of quantum batteries and in the more general context of energy
transfer devices, addressing for example the controlled application of sequences of pulses
in multi-qubit geometries.
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Abbreviation
The following abbreviations is used in this manuscript:

QB Quantum Battery

Nomenclature
List of the Relevant Parameters in the Model:

∆ Level spacing of the qubit
g Qubit–radiation coupling
f (t) Envelop of the applied pulse
ω Frequency of the modulating cosine
θ Effective integral of the pulse
tm Measurement time
a Ground-state probability at t = 0
φ Relative phase at t = 0

References
1. Bhattacharjee, S.; Dutta, A. Quantum thermal machines and batteries. Eur. Phys. J. B 2021, 94, 239. [CrossRef]
2. Vincent, C.A.; Scrosati, B. Modern Batteries; Butterworth-Heinemann: Oxford, UK, 1997.
3. Dell, R.M.; Rand, D.A.J. Understanding Batteries; The Royal Society of Chemistry: Cambridge, UK, 2001.
4. Campaioli, F.; Pollock, F.A.; Vinjanampathy, S. Thermodynamics in the Quantum Regime; Springer: Berlin, Germany, 2018.
5. Alicki, R.; Fannes, M. Entanglement boost for extractable work from ensembles of quantum batteries. Phys. Rev. E 2013, 87, 042123.

[CrossRef]
6. Binder, F.C.; Vinjanampathy, S.; Modi, K.; Goold, J. Quantacell: Powerful charging of quantum batteries. New J. Phys. 2015,

17, 075015. [CrossRef]
7. Campaioli, F.; Pollock, F.A.; Binder, F.C.; Céleri, L.; Goold, J.; Vinjanampathy, S.; Modi, K. Enhancing the Charging Power of

Quantum Batteries. Phys. Rev. Lett. 2017, 118, 150601. [CrossRef] [PubMed]
8. Julià-Farré, S.; Salamon, T.; Riera, A.; Bera, M.N.; Lewenstein, M. Bounds on the capacity and power of quantum batteries. Phys.

Rev. Res. 2020, 2, 023113. [CrossRef]
9. Gyhm, J.-Y.; Safránek, D.; Rosa, D. Quantum Charging Advantage Cannot Be Extensive without Global Operations. Phys. Rev.

Lett. 2022, 128, 140501. [CrossRef]
10. Le, T.P.; Levinsen, J.; Modi, K.; Parish, M.M.; Pollock, F.A. Spin-chain model of a many-body quantum battery. Phys. Rev. A 2018,

97, 022106. [CrossRef]
11. Liu, J.; Segal, D.; Hanna, G. A loss-free excitonic quantum battery. J. Phys. Chem. C 2019, 123, 18303. [CrossRef]

http://doi.org/10.1140/epjb/s10051-021-00235-3
http://dx.doi.org/10.1103/PhysRevE.87.042123
http://dx.doi.org/10.1088/1367-2630/17/7/075015
http://dx.doi.org/10.1103/PhysRevLett.118.150601
http://www.ncbi.nlm.nih.gov/pubmed/28452497
http://dx.doi.org/10.1103/PhysRevResearch.2.023113
http://dx.doi.org/10.1103/PhysRevLett.128.140501
http://dx.doi.org/10.1103/PhysRevA.97.022106
http://dx.doi.org/10.1021/acs.jpcc.9b06373


Batteries 2022, 8, 43 12 of 13

12. Rossini, D.; Andolina, G.M.; Rosa, D.; Carrega, M.; Polini, M. Quantum Advantage in the Charging Process of Sachdev-Ye-Kitaev
Batteries. Phys. Rev. Lett. 2020, 125, 236402. [CrossRef]

13. Rosa, D.; Rossini, D.; Andolina, G.M.; Polini, M.; Carrega, M. Ultra-stable charging of fast-scrambling SYK quantum batteries. J.
High Energy Phys. 2020, 67, 2020. [CrossRef]

14. Crescente, A.; Carrega, M.; Sassetti, M.; Ferraro, D. Charging and energy fluctuations of a driven quantum battery. New J. Phys.
2020, 22, 063057. [CrossRef]

15. Santos, A.C. Quantum advantage of a two-level batteries in self-discharging process. Phys. Rev. E 2021, 103, 042118. [CrossRef]
[PubMed]

16. Peng, L.; He, W.-B.; Chesi, S.; Lin, H.-Q.; Guan, X.-W. Lower and upper bounds of quantum battery power in multiple central
spin systems. Phys. Rev. A 2021, 103, 052220. [CrossRef]

17. Dou, F.-Q.; Lu, Y.-Q.; Wang, Y.-J.; Sun, J.-A. Extended Dicke quantum battery with interatomic interactions and driving field. Phys.
Rev. B 2022, 105, 115405. [CrossRef]

18. Shaghaghi, V.; Singh, V.; Benenti, G.; Rosa, D. Micromasers as Quantum Batteries. arXiv 2022, arXiv:2204.09995.
19. Ferraro, D.; Andolina, G.M.; Campisi, M.; Pellegrini, V.; Polini, M. Quantum supercapacitors. Phys. Rev. B 2019, 100, 075433.

[CrossRef]
20. Quach, J.Q.; McGhee, K.E.; Ganzer, L.; Rouse, D.M.; Lovett, B.W.; Gauger, E.M.; Keeling, J.; Cerullo, G.; Lidzey, D.G.; Virgili, T.

Superabsorption in an organic microcavity: Toward a quantum battery. Sci. Adv. 2022, 8, eabk3160. [CrossRef]
21. Hu, C.-K.; Qiu, J.; Souza, P.J.P.; Yuan, J.; Zhou, Y.; Zhang, L.; Chu, J.; Pan, X.; Hu, L.; Li, J.; et al. Optimal charging of a

superconducting quantum battery. arXiv 2021, arXiv:2108.04298.
22. De Buy Wenniger, I.M.; Thomas, S.E.; Maffei, M.; Wein, S.C.; Pont, M.; Harouri, A.; Lemaitre, A.; Sagnes, I.; Somaschi, N.;

Auffèves, A.; et al. Coherence-powered work exchanges between a solid-state qubit and light fields. arXiv 2022, arXiv:2202.01109.
23. Andolina, G.M.; Farina, D.; Mari, A.; Pellegrini, V.; Giovannetti, V.; Polini, M. Charger-mediated energy transfer in exactly

solvable models for quantum batteries. Phys. Rev. B 2018 98, 205423. [CrossRef]
24. Qi, S.-F.; Jing, J. Magnon-mediated quantum battery under systematic errors. Phys. Rev. A 2021, 104, 032606. [CrossRef]
25. Zhang, Y.-Y.; Yang, T.-R.; Fu, L.; Wang, X. Powerful harmonic charging in a quantum battery. Phys. Rev. E 2019, 99, 052106.

[CrossRef] [PubMed]
26. Chen, J.; Zhan, L.; Shao, L.; Zhang, X.; Zhang, Y.-Y.; Wang, X. Charging Quantum Batteries with a General Harmonic Driving

Field. Ann. Phys. 2020, 532, 1900487. [CrossRef]
27. Córcoles, A.D.; Kandala, A.; Javadi-Abhari, A.; McClure, D.T.; Cross, A.W.; Temme, K.; Nation, P.D.; Steffen, M.; Gambetta, J.M.

Challenges and Opportunities of Near-Term Quantum Computing Systems. Proc. IEEE 2020, 108, 1338. [CrossRef]
28. Cao, Y.; Romero, J.; Olson, J.P.; Degroote, M.; Johnson, P.D.; Kieferová, M.; Kivlichan, I.D.; Menke, T.; Peropadre, B.; Sawaya,

N.P.D.; et al. Quantum Chemistry in the Age of Quantum Computing. Chem. Rev. 2019, 119, 19. [CrossRef]
29. Guimaraes, J.D.; Tavares, C.; Soares, L.; Vasilevskiy, M.I. Simulation of Nonradiative Energy Transfer in Photosynthetic Systems

Using a Quantum Computer. Complexity 2020, 2020, 3510676. [CrossRef]
30. Chiesa, A.; Tacchino, F.; Grossi, M.; Santini, P.; Tavernelli, I.; Gerace, D.; Carretta, S. Quantum hardware simulating four-

dimensional inelastic neutron scattering. Nat. Phys. 2019, 15, 5. [CrossRef]
31. Fillion-Gourdeau, F.; MacLean, S.; Laflamme, R. Algorithm for the solution of the Dirac equation on digital quantum computers.

Phys. Rev. A 2017, 95, 4. [CrossRef]
32. Klco, N.; Savage, M.J.; Stryker, J.R. SU(2) non-Abelian gauge field theory in one dimension on digital quantum computers. Phys.

Rev. D 2020, 101, 7. [CrossRef]
33. Nachman, B.; Provasoli, D.; de Jong, W.A.; Bauer, C.W. Quantum Algorithm for High Energy Physics Simulations. Phys. Rev. Lett.

2021, 126, 6. [CrossRef]
34. Agliardi, G.; Grossi, M.; Pellen, M.; Prati, E. Quantum integration of elementary particle processes. arXiv 2022, arXiv:2201.01547.
35. Cervia, J.C.; Balantekin, A.B.; Coppersmith, S.N.; Johnson, C.W.; Love, P.J.; Poole, C.; Robbins, K.; Saffman, M. Exactly solvable

model as a testbed for quantum-enhanced dark matter detection. arXiv 2020, arXiv:2201.01547.
36. Herman, D.; Googin, C.; Liu, X.; Galda, A.; Safro, I.; Sun, Y.; Pistoia, M.; Alexeev, Y. A Survey of Quantum Computing for Finance.

arXiv 2022, arXiv:2201.02773.
37. Gao, Q.; Jones, G.O.; Motta, M.; Sugawara, M.; Watanabe, H.C.; Kobayashi, T.; Watanabe, E.; Ohnishi, Y.; Nakamura, H.;

Yamamoto, N. Applications of quantum computing for investigations of electronic transitions in phenylsulfonyl-carbazole TADF
emitters. NPJ Comput. Mater. 2021, 7, 70. [CrossRef]

38. Moll, N.; Barkoutsos, P.; Bishop, L.S.; Chow, J.M.; Cross, A.; Egger, D.J.; Filipp, S.; Fuhrer, A.; Gambetta, J.M.; Ganzhorn, M.; et
al. Quantum optimization using variational algorithms on near-term quantum devices. Quantum Sci. Technol. 2018, 3, 030503.
[CrossRef]

39. Alexander, T.; Kanazawa, N.; Egger, D.J.; Capelluto, L.; Wood, C.J.; Javadi-Abhari, A.; McKay, D.C. Qiskit pulse: Programming
quantum computers through the cloud with pulses. Quantum Sci. Technol. 2020, 5, 044006. [CrossRef]

40. Preskill, J. Quantum Computing in the NISQ era and beyond. Quantum 2018, 2, 79. [CrossRef]
41. Koch, J.; Yu, T.M.; Gambetta, J.; Houck, A.A.; Schuster, D.I.; Majer, J.; Blais, A.; Devoret, M.H.; Girvin, S.M.; Schoelkopf, R.J.

Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 2007, 76, 042319. [CrossRef]
42. Schleich, W.P. Quantum Optics in Phase Space; Wiley VCH: Berlin, Germany, 2021.

http://dx.doi.org/10.1103/PhysRevLett.125.236402
http://dx.doi.org/10.1007/JHEP11(2020)067
http://dx.doi.org/10.1088/1367-2630/ab91fc
http://dx.doi.org/10.1103/PhysRevE.103.042118
http://www.ncbi.nlm.nih.gov/pubmed/34005945
http://dx.doi.org/10.1103/PhysRevA.103.052220
http://dx.doi.org/10.1103/PhysRevB.105.115405
http://dx.doi.org/10.1103/PhysRevB.100.075433
http://dx.doi.org/10.1126/sciadv.abk3160
http://dx.doi.org/10.1103/PhysRevB.98.205423
http://dx.doi.org/10.1103/PhysRevA.104.032606
http://dx.doi.org/10.1103/PhysRevE.99.052106
http://www.ncbi.nlm.nih.gov/pubmed/31212558
http://dx.doi.org/10.1002/andp.201900487
http://dx.doi.org/10.1109/JPROC.2019.2954005
http://dx.doi.org/10.1021/acs.chemrev.8b00803
http://dx.doi.org/10.1155/2020/3510676
http://dx.doi.org/10.1038/s41567-019-0437-4
http://dx.doi.org/10.1103/PhysRevA.95.042343
http://dx.doi.org/10.1103/PhysRevD.101.074512
http://dx.doi.org/10.1103/PhysRevLett.126.062001
http://dx.doi.org/10.1038/s41524-021-00540-6
http://dx.doi.org/10.1088/2058-9565/aab822
http://dx.doi.org/10.1088/2058-9565/aba404
http://dx.doi.org/10.22331/q-2018-08-06-79
http://dx.doi.org/10.1103/PhysRevA.76.042319


Batteries 2022, 8, 43 13 of 13

43. Krantz, P.; Kjaergaard, M.; Yan, F.; Orlando, T.P.; Gustavsson, S.; Oliver, W.D. A Quantum Engineer’s Guide to Superconducting
Qubits. Appl. Phys. Rev. 2019, 6, 021318. [CrossRef]

44. Jeffrey, E.; Sank, D.; Mutus, J.Y.; White, T.C.; Kelly, J.; Barends, R.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; et al. Fast
Accurate State Measurement with Superconducting Qubits. Phys. Rev. Lett. 2014, 112, 190504. [CrossRef]

http://dx.doi.org/10.1063/1.5089550
http://dx.doi.org/10.1103/PhysRevLett.112.190504

	Introduction
	Model
	Calibration
	Results
	Universal Charging Behavior and Technical Constraints on the Pulses
	Best Fit of the Data and Characterization of the QB Performances
	More General Initial Conditions

	Conclusions
	References

