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The variational quantum eigensolver (VQE) is an algorithm to compute ground and excited state
energy of quantum many-body systems. A key component of the algorithm and an active research
area is the construction of a parametrized trial wavefunction – a so called variational ansatz. The
wavefunction parametrization should be expressive enough, i.e. represent the true eigenstate of a
quantum system for some choice of parameter values. On the other hand, it should be trainable,
i.e. the number of parameters should not grow exponentially with the size of the system. Here,
we apply VQE to the problem of finding ground and excited state energies of the odd-odd nucleus
6Li. We study the effects of ordering fermionic excitation operators in the unitary coupled clusters
ansatz on the VQE algorithm convergence by using only operators preserving the Jz quantum
number. The accuracy is improved by two order of magnitude in the case of descending order.
We first compute optimal ansatz parameter values using a classical state-vector simulator with
arbitrary measurement accuracy and then use those values to evaluate energy eigenstates of 6Li on
a superconducting quantum chip from IBM. We post-process the results by using error mitigation
techniques and are able to reproduce the exact energy with an error of 3.8% and 0.1% for the ground
state and for the first excited state of 6Li, respectively.

I. INTRODUCTION

The simulation of static and dynamic properties of
quantum many-body systems is a challenging task for
classical computers due to the exponential scaling of the
Hilbert space. In contrast, quantum computers could
be natural devices to solve such problems [1], avoiding
the exponential scaling. For example, quantum algo-
rithms such as the quantum phase estimation (QPE)
[2] and imaginary time evolution [3], can perform eigen-
values calculations in polynomial time [4] using future
quantum error-corrected hardware. Currently, the cir-
cuit depth required to implement them is far greater
than that of state-of-the-art noisy intermediates scale
quantum (NISQ) [5] devices. Nevertheless, NISQ devices
have attracted a lot of interest in nuclear physics [6–19].
Presently available quantum hardware can be used to
compute the ground-state energy E0 of a Hamiltonian
H by using the variational principle. The variational
quantum eigensolver (VQE) [20–22] is a hybrid quan-
tum-classical algorithm [23] which classically minimizes
the expectation value of a trial wavefunction in the form
of a parametrized quantum circuit [24]

E0 ≤
〈ψ(θ)|H |ψ(θ)〉
〈ψ(θ)|ψ(θ)〉

. (1)

The trainability of the VQE is closely related to the
chosen wavefunction ansatz. It has to be expressive
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enough to contain the optimal solutions yet simple
enough to enable training and to avoid unpleasant
effects like the barren plateaus [25]. Hardware efficient
[26] and physically inspired ansätze [27] are popular
choices for this task. The former is as shallow as
possible in the circuit architecture, with the smallest
number of CNOT gates executable on NISQ devices,
whereas the latter is built according to properties of the
underlying physical system. Although VQE simulations
have been widely and successfully used in quantum
chemistry [20, 21, 26–30], there are fewer applications
in nuclear physics [6, 12, 14–16]. While both fields
share many similarities, such as being formulated
as non-relativistic quantum field theories in second
quantization, they differ in many other aspects. For
instance, protons and neutrons, the equivalent of α and
β electrons in quantum chemistry, interact via strong
and short-ranged forces, and symmetry breaking, i.e.
nuclear deformation and superfluidity, is abundant.
This makes it important to reflect this physics in the
quantum circuit [14].

Starting from the work [14] on atomic nuclei, we
study several training strategies for the convergence of
different ansätze for the 6Li nucleus and evaluate our
results on superconducting quantum hardware. We note
that the papers [14, 16] focused on even-even nuclei,
which are simpler in structure than the odd-odd nucleus
6Li. This makes the problem an interesting step toward
VQE applications in nuclear physics.
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This paper is organized as follows. We define the the-
oretical framework in Sec. II, introduce the model in
Sec. II A, and present the different ansätze used in the
present work in Sec. II C. We present results for the ener-
gies of the ground-state and first excited states obtained
from simulations in Sec. III B and from superconducting
quantum hardware in Sec. III C.

II. THEORETICAL FRAMEWORK

We consider a simple shell model where the nucleus
6Li is described as a valence proton and neutron added
to the inert 4He core. In this Section, we describe
the model space and Hamiltonian, present the unitary
coupled-cluster ansatz, and discuss in detail the ordering
and implementation of the excitation operators.

A. Model space

The model space consists of the 0p3/2 and 0p1/2 har-
monic oscillator orbitals for the neutron and the pro-
ton, and we use the Cohen-Kurath interaction [31]. Our
work builds on the recent computation of 6He in the
same framework [14] and extends it to a somewhat larger
Hilbert space and a somewhat more complicated nucleus.
In addition to being realistic and non-trivial, our model
has the advantage of being simple enough to be run on
current NISQ devices. The Hamiltonian can be written
in second quantization as

H =
∑
i

εiâ
†
i âi +

1

2

∑
ijkl

Vijlkâ
†
i â
†
j âkâl . (2)

Here, â†i and âi are the creation and annihilation oper-
ators , respectively, for a nucleon in the state |i〉. The
single-particle energies are denoted as εi and two-body
matrix elements as Vijkl. All computed energies are with
respect to the ground-state energy of the 4He core.

We have |i〉 = |n = 0, l = 1, j, jz, tz〉 where n and l
denote the radial and orbital angular momentum quan-
tum numbers, respectively, j = 1/2, 3/2 the total spin,
jz its projection, and tz = ±1/2 the isospin projection.
Thus, the p shell model space includes six orbitals for
the protons and six orbitals for the neutrons, and we
need N = 12 qubits, one per orbital. The Cohen-Kurath
interaction preserves total spin J and total isospin
T , and their projections Jz and Tz. We will exploit
that Jz and Tz are conserved in our wavefunction ansatz.

We convert the shell-model Hamiltonian (2) into a
qubit Hamiltonian via the Jordan-Wigner [32] transfor-
mation, i.e. we have the mapping

â†i =
1

2

i−1∏
j=0

−Zj

 (Xi − iYi), (3)

qubit j jz tz

0 1/2 −1/2 −1/2

1 1/2 +1/2 −1/2

2 3/2 −3/2 −1/2

3 3/2 −1/2 −1/2

4 3/2 +1/2 −1/2

5 3/2 +3/2 −1/2

6 1/2 −1/2 +1/2

7 1/2 +1/2 +1/2

8 3/2 −3/2 +1/2

9 3/2 −1/2 +1/2

10 3/2 +1/2 +1/2

11 3/2 +3/2 +1/2

Table I. Orbitals represented by the different qubits. Here,
j is the total angular momentum, jz its projection on the z
axis and tz is the third component of the isospin.

âi =
1

2

i−1∏
j=0

−Zj

 (Xi + iYi), (4)

where Xi, Yi and Zi are the Pauli matrices acting on
the ith qubit. The Bravyi-Kitaev [33] mapping is an al-
ternative to Jordan-Wigner that achieves exponentially
shorter Pauli strings in the asymptotic limit. However,
both transformations perform similarly for modest sys-
tems sizes [34]. As only the Jordan-Wigner mapping en-
joys an intuitive translation of the Jz symmetry on the
qubit system we will only consider this mapping here.
Each single-particle state is represented by a qubit where
|0〉 and |1〉 refer to an empty and an occupied state, re-
spectively. For completeness, we list the different states
in Table I.

Despite the simplicity of our model, the Hamilto-
nian (2) consists of 975 Pauli terms. This large number
arises because the short-range nuclear interaction is
nonlocal when expressed in the harmonic-oscillator
basis, and the number of Pauli terms naively scales as
n4, which is reduced by an order of magnitude because
of the conservation of spin and isospin. Eventually, it
could be an advantage to use a lattice formulation [35]
where the short range of the nuclear interaction reduces
the number of Pauli terms. At this moment, however,
the minimum 2× 2× 2 lattice requires 32 qubits because
of spin and isospin degrees of freedom, and our smaller
shell-model space yields more realistic results.

We deal with the large number of Pauli terms by group-
ing them into 250 sets of qubit-wise commuting oper-
ators. Commuting operators are simultaneously diago-
nalizable, allowing the computation of the expectation
value from the measurements of a single circuit. Ad-
ditional techniques exist to reduce further the number
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of circuits. References [36, 37] propose to further group
the Pauli operators to include general commutating op-
erators at the cost of appending a circuit with O(N2)
gates before the measurements. General commutating
operators O1,O2 satisfy [O1,O2] = 0 whereas qubit-wise
commuting operators [O1

i ,O2
i ] = 0 for all i. Ref. [38]

obtained a cubic reduction by using low-rank factoriza-
tion. It is even possible to reduce the measurements to a
single operator [39], by using quantum information com-
plete measurements at the cost of a higher number of
shots and ancillas. Nonetheless, currently available re-
sources for this work were enough to evaluate the whole
Hamiltonian with the qubit-wise commutating grouping.
We consequently followed this technique to avoid deeper
circuits.

B. The unitary coupled cluster ansatz

The unitary coupled clusters ansatz (UCC) is widely
used to obtain a correlated ground-state from an initial
Hartree-Fock solution |ψ0〉 in quantum chemistry and nu-
clear physics [28, 29, 40]. It lets the Hartree-Fock state

evolve according to the cluster operator T̂ . To be com-
patible with a quantum computing paradigm, the oper-
ator has to be unitary. Therefore we choose

|ψ(θ)〉 = ei(T̂ (θ)−T̂ †(θ)) |ψ0〉 . (5)

T̂ can be decomposed into singles, i.e. 1-particle–1-hole
(1p-1h), doubles (2p-2h), ..., excitation operators of the
following form

T̂ = T̂1 + T̂2 + . . . (6)

with

T̂1 =
∑

i∈virt;α∈occ
θαi â

†
i âα (7)

and

T̂2 =
∑

i,j∈virt;α,β∈occ

θαβij â
†
i â
†
j âαâβ . (8)

In the above definitions, the Latin indices run over
virtual (empty) states and the Greek over occupied
states of the initial state. The cluster operator drives
occupied orbitals to empty ones. To respect symmetries
and reduce the number of terms, we only considered
excitations with a total angular-momentum projection
Jz = 0. The Jordan-Wigner mapping is then used
to transform the unitary cluster ansatz into a qubit
operator with trainable parameters θ. The UCC ansatz
is finally constructed with the time evolution of these
excitation operators, which is implemented using Trot-
terization with one step.

The Initial State |ψ0〉 is usually chosen as the Hartree-
Fock solution. However, it is often sufficient to lie close

enough to the actual ground-state. For instance, the 6Li
ground-state has spin J = 1 and therefore Jz = −1, 0
or 1. So, any product state with this configuration, e.g.
|1〉⊗ |6〉 or |0〉⊗ |7〉 should converge to the ground-state.
Moreover, this observation can help us find the first ex-
cited state (with spin J = 3), which lies in the subspace
with a total Jz of -3, -2, 2, or 3 orthogonal to the ground
state. This observation provides a particular advantage
over other methods in finding excited states with the
VQE, such as the iterative constrained optimization [41],
the discriminative VQE [42], or those based on the quan-
tum equation of motion [43]. These techniques require
additional quantum or classical resources and rely on the
accuracy of the prepared ground-state, therefore suffering
from the error amplification phenomenon. On the other
hand, enforcing the ansatz to stay in a particular region
of the Hilbert space by choosing the right quantum num-
bers, produces stable and accurate solutions which are
easy to obtain when applicable.

C. Excitation ordering

In the following, we describe different strategies to
study the convergence of the variational method. The
ordering of the excitation operators impacts the training
landscape and the convergence behavior. Hence, an
ansatz may quickly converge while another remains
trapped in a local minimum. We observed this in our
work by trying different ordering.

Shuffling is a strategy that consists of choosing the
best sorting over multiple runs with a random shuffling,
and it yields good convergence. However, it quickly
becomes prohibitive to explore the shuffled space when
enlarging the system size. Nevertheless, the ordering has
a non-trivial effect on the optimization procedure. We
will refer to this strategy as best shuffle throughout this
paper.

Ordering represents a second option, where we pro-
ceed to order the operators by their absolute magnitude
of the corresponding term in the Hamiltonian. Hence,
the singles excitation refers to the corresponding single-

particle energy εi while the doubles excitation â†i â
†
j âαâβ

refers to the two-body term Vijβα. The considered
Hamiltonian permits only to apply this ordering on
singles and doubles terms, but more complex models
could be considered to order 3p-3h or 4p-4h excitation as
well. This approach, similar to the QDrift [44] algorithm
for time evolution (which chooses the terms randomly
to be evolved according to their relative magnitude),
orders the excitation operator in descending order of
magnitude such that the most important ones are placed
at the beginning. We observed that this technique,
which we will refer to as ordered UCCSD, is the most
promising ansatz among the ones considered in this
work. Moreover, when coupled to a layerwise learning
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scheme, it achieves arbitrary accuracy in a polynomial
number of optimization steps.

Adaptive Derivative-Assembled Problem-Tailored
(ADAPT)-VQE is another efficient strategy to adap-
tively order the operators with respect to the magnitude
of their gradient. ADAPT-VQE [30] constructs the
ansatz by picking from a pool of operators {τ̂0, . . . , τ̂n}
the one which has the most impact on the expecta-
tion value, namely the one with the largest gradient
magnitude

∣∣∣∣∂E∂θi
∣∣∣∣
θi=0

= | 〈ψ| [H, τ̂i] |ψ〉 |. (9)

The chosen operator is recursively added to the current
ansatz, leading to

|ψ(θ)〉 = e−iθlτle−iθl−1τl−1 . . . e−iθ0τ0 |ψ0〉 , (10)

after adding l operators. We set θl = 0 to allow a
smooth transition between the architecture’s update.
The picking action is followed by k optimization steps,
and it is repeated until convergence is reached. It gen-
erally leads to accurate solutions with minimal depth.
The computation of the gradients of all the operators
in the pool, which is time-consuming, can in principle
be performed in parallel. We note that Ref. [30] uses
k = 1. However, we found useful to choose k = 10.
This permits to perform more optimization steps while
keeping the ansatz shallow.

Grimsley et al. [30] demonstrated with numerical
experiments that ADAPT-VQE is superior to random
or lexical ordering of the excitation operators in terms
of convergence and circuit depth. However, our study
suggests that reducing the operator pool using sym-
metries and ordering with respect to their magnitude
achieves quicker convergence. Studies of the Lipkin-
Meshkov-Glick model [16] showed that the number
of operators needed to achieve 1% accuracy increases
linearly with the number of valence neutrons. However,
this behavior has only been simulated within nuclei with
an even number of valence neutrons and without valence
protons: it remains an open question whether this result
also holds with neutron-proton interactions.

Finally, we consider layerwise learning, a technique ini-
tially proposed to mitigate barren plateaus in quantum
machine learning [45]. The idea is to consider m singles
terms first, perform k optimization steps, add m new sin-
gles terms, and continue until all singles terms have been
used before moving to higher-order interactions. In an or-
dered approach, the first k operators added to the ansatz
are instead chosen according to the selected ordering.

D. Hardware efficient ansatz

Because of the Jordan Wigner mapping, fermionic exci-
tation operators act on O(N) qubits. Therefore, they are
expensive for NISQ devices due to the increased connec-
tivity required and the consequent increase in the number
of CNOT and Swap gates needed after circuit transpila-
tion. A simple and alternative way to reduce this expense
is to consider qubit-based excitation (QBE) [46, 47] op-
erators. QBE efficiently implements the excitation oper-
ators on O(1) qubits by neglecting the Z terms in the
Jordan Wigner mapping. Essentially, creation operators
are mapped to

â†i =
1

2
(Xi − iYi), (11)

and annihilation operators to

âi =
1

2
(Xi + iYi). (12)

The difference between a Jordan Wigner mapping is that
the resulting operator will not respect fermionic anti-
commutation relations, which are enforced by the prod-
uct of Pauli Z matrices. Single excitation operators be-
tween qubits i and j read

Uij(θ) = exp

[
i
θ

2
(XiYj − YiXj)

]
(13)

and double excitation operator between qubits i, j, k and
l are

Uijkl(θ) = exp
[
i
θ

8
(XiYjXkXl + YiXjXkXl

+YiYjYkXl + YiYjXkYl

−XiXjYkXl −XiXjXkYl

−YiXjYkYl −XiYjYkYl)
]
.

(14)

Even if QBE-UCC ansätze do not respect the fermionic
anti-commutation relations, they show a comparable
efficiency for ground-state calculations. Those ansätze
are hardware efficient as they act on a fixed number
of qubits (2 for the singles, 4 for the doubles, and 2k

for the k-th excitation operators). The exact circuit
formulation can be found in the original paper [46].

Finally, we also considered an efficient excitation-pre-
serving ansatz, such as the one proposed in [26] for quan-
tum chemistry. These ansätze are constructed with gates
preserving the number of occupied orbitals. Moreover,
time-reversal symmetry can lead to further simplifica-
tions. They have the advantage of using fewer CNOT
gates resulting in a more shallow circuit, an advantage
for near-time devices. However, they cannot respect the
total Jz symmetry as they act on the protons and neu-
trons separately. In our investigations, this led to circuits
suffering from barren plateaus [25] which are expected in
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generic circuits using a global cost function [48], such
as the expectation value of the Hamiltonian. We re-
mark that the gradient vanishes from the beginning, and
changing the number of layers, optimizer, learning rate,
parameters initialization, and even using an automatic
differentiation framework to compute the gradient did
not permit us to train the ansatz. This observation sug-
gests that symmetries play a non-negligible role in nu-
clear structure calculations since it is the significant dif-
ference between UCC based ansätze and excitation pre-
serving ones.

III. RESULTS

In the following, we present the results obtained with
the different circuit architectures discussed in Sec. II C.
The investigations were performed on a statevector
simulator and the hardware-friendly QBE-UCCSD
ansatz was evaluated on a real quantum processor.

Statevector simulations allow one to probe the poten-
tial of this approach under ideal conditions, such as us-
ing exponentially many shots or without noise. UCC
ansätze are notoriously deep, and the noise heavily dete-
riorates the outcome, even when using error mitigation
techniques. We address these difficulties in the following,
showing the results step by step.

A. Optimization

For the optimization we use the simultaneous pertur-
bation stochastic approximation (SPSA) [49] with a fixed
number of iterations. SPSA efficiently approximates
the gradient with two circuit evaluations by shifting the
parameters in two random directions. The learning rate
lr = 0.1, is halved at every 25 iterations until lr = 0.001
to ensure a fast convergence at the beginning and to
avoid oscillations at the end. Looking at realistic exper-
iments, the stochastic nature of SPSA makes it resilient
to the statistical noise coming from the finite number
of measurements, making it appealing for quantum
devices. All the initial parameters, except the first one,
are set to zero at the beginning of the optimization in an
attempt to mitigate barren plateaus [50], while the first
is chosen at random between 0 and 2π, but fixed across
the different ansätze. We remark that the value of the
first parameter has a negligible effect on the convergence.

A variant of the SPSA optimizer using the geometry
of the Hilbert space has been recently proposed [51]. It
uses six circuit evaluations to approximate the Hessian
(which can be used to compute the quantum natural
gradient) and significantly improves the optimization effi-
ciency of quantum circuits. In the present work, the effect
of the quantum natural gradient was mainly appreciated
on hardware-friendly ansatz such as the QBE-UCC.

Figure 1. Training curve in a semilog scale for fermionic UCC
ansatz with different ordering. The best shuffle curve is taken
among 20 independent runs. The grey area corresponds to
the 1% margin, which is acceptable in most applications.

B. State-vector simulations

The gate-based quantum circuits used in this sec-
tion were built using the open-source framework
qiskit-nature [52] and were run on pennylane [53]
using the C++ lightning.qubit plugin.

We first assess the effect of ordering on the fermionic-
UCC ansatz starting from the initial state |2〉⊗|11〉. This
state has Jz = 0, and has the largest operator pool on
which we perform 500 optimization steps. The optimiza-
tion curve, which shows the error ratio

error ratio =

∣∣∣∣EVQE − Eexact

Eexact

∣∣∣∣ , (15)

for different ordering is shown in Fig. 1. We observe that
the descending ordering (pink) strategy leads to fast
convergence while the ascending ordering (green) strat-
egy converges slowly. Thus, most important operators
should be placed first. We also note that a favorable
convergence trend is also given by the best shuffle curve
(orange), which is taken among 20 independent runs,
and by some random run combinations, for which the
relative differences are not easily interpreted.

a. Ground state calculation We now compare the
different ansätze presented in Sec. II C to prepare the
ground state. For the fermionic-UCC ansatz, we start
again from |2〉 ⊗ |11〉 state, and we train with the SPSA
optimizer. In the iterative approach (ADAPT-VQE,
Layerwise Learning), k = 10 iterations are performed
between each architecture update. This choice has
shown to be a good trade-off between a slow convergence
(for large k) and deep circuits (for small k). For the

https://qiskit.org/documentation/nature/
https://pennylane-lightning.readthedocs.io/en/latest/devices.html
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Figure 2. Training curve in a semilog scale for all different
ansätze with different training strategies. The grey area cor-
responds to the 1% margin, which is acceptable in most ap-
plications.

QBE-UCC ansatz, it has been experienced that it is
preferable to start from the state |0〉⊗|7〉, which also has
the smallest operator pools and is consequently better
suited for noisy devices.

The learning curves are shown in Fig. 2 and we
observe that descending ordering strategies are among
the fastest and more accurate ones, the best being
the layerwise learning with descending ordering (pink).
Interestingly, the ADAPT-VQE (brown) approach does
not perform as well as the former. We suspect that the
gradient evaluated at θ = 0 does not contain enough
information to obtain the optimal solution. On the one
hand, the circuit at the beginning contains not enough
operators, which explains the slow convergence curve.
On the other hand, the algorithm mainly picks the same
operators which may prevent convergence to the optimal
solution. Hence, it only used half of the available op-
erators before becoming too deep to be trained efficiently.

The quantum natural SPSA optimizer significantly
improves the optimization of the QBE-UCC ansatz,
compared to the standard SPSA. This can be seen by
comparing the QBE (QNSPSA) curve (dark green)
with the QBE (orange) one. The descending ordered
UCC ansatz achieves an exponentially fast convergence,
and the descending layerwise learning strategy reaches
arbitrary accuracy.

b. First excited state As pointed out in Sec. II B, the
choice of the initial state allows us to find the first excited
state easily. Hence, an initial state with Jz = −3, −2, 2
or 3 will remain in a subspace is orthogonal to the ground
state. For instance, the state |1〉 ⊗ |11〉 has Jz = 2 and
it is therefore a possible candidate. The result obtained

in this case, for a fermionic UCC ansatz optimized on a
statevector simulator, achieves an error ratio of 10−11.

C. Hardware

We evaluate the most hardware-efficient ansatz, i.e.
QBE-UCC, previously trained on the statevector simu-
lator, on a superconducting chip from IBM. Gate-based
quantum circuits, ran on the cloud using the IBM Quan-
tum Lab, were transpiled onto the hardware topology by
using the SWAP-based BidiREctional (SABRE) heuris-
tic search algorithm [54]. Multiple runs were performed
to select the circuit which minimized the total number
of CNOT gates needed. The SABRE algorithm enabled
a 50% CNOT reduction compared to a naive approach
for a total of 209 CNOTs. Measurement error mitiga-
tion was performed efficiently, as proposed in Ref. [55],
by individually inverting the error matrices

Sk =

(
P

(k)
0,0 P

(k)
0,1

P
(k)
1,0 P

(k)
1,1

)
. (16)

Here, P
(k)
i,j is the probability of the k-th qubit to be in

state j ∈ {0, 1} while measured in state i ∈ {0, 1}. While
this only corrects the uncorrelated readout errors, it is
argued in Ref. [55] that they are the predominant ones,
making it a useful tool for measurement error mitigation
for large number of qubits.

Regarding CNOT errors, the zero-noise extrapolation
[56–58] represents a powerful mitigation technique by
artificially stretching the noise to be extrapolated to
the noise-less regime. However, the structure of the
considered Hamiltonian amplified the effect of CNOT
errors considerably and prevented us from using this
strategy. Hence, states with a wrong number of occupied
orbitals belong to different nuclei, which can have much
lower energy. We observed a discrepancy of almost 300%
by stretching the noise with a factor two and did not
investigate zero-noise extrapolation further.

Our tests were executed on the IBM Quantum 27
qubits architecture ibmq mumbai and repeated 10 times
for the ground-state and 5 for the first excited state, us-
ing 8092 shots each. The results are reported in Table
II, alongside the number of parameters and CNOT gates
after transpilation. We observe that the energy is repro-
duced up to 3.81% and 0.12% accuracy for the ground-
and first excited state, respectively. Both lie within
one standard deviation confidence interval. Moreover,
the standard deviation for the ground-state is ten times
smaller than the energy gap with the first excited state,
which accentuates the accuracy of our results. We remark
that measurement error mitigation increases the accuracy
by more than 10%, making it appealing for readout error
mitigation in quantum circuits with a large number of
qubits.
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hardware # parameters # CNOT mean st. deviation exact error ratio

ibmq mumbai raw (gs) 9 209 -6.27 0.269 -5.529 13.36%

ibmq mumbai mittigated (gs) 9 209 -5.319 0.24 -5.529 3.81%

ibmq mumbai raw (1st es) 3 41 -2.907 0.87 -3.420 14.97%

ibmq mumbai mittigated (1st es) 3 41 -3.424 0.08 -3.420 0.12%

Table II. Hardware results of the QBE-UCC ansats for the ground-state (gs) and first excited state (1st es), alongside the number
of parameters and CNOT gates after transpilation. The exact result, obtained with exact diagonalization, are reproduced up
to one standard deviation.

IV. CONCLUSIONS

We performed shell-model quantum-computations of
the nucleus 6Li, composed of a frozen 4He core and two
valence nucleons. We studied the effect of the ordering
of excitation operators in unitary coupled clusters type
ansätze for the variational quantum eigensolver. We
empirically observed that the ordering strongly affects
the learning curve and that arranging in descending
order of magnitude with respect to the Hamiltonian
leads to a better convergence behavior than random
ordering or ADAPT-VQE. Hence, operators with high
magnitude have more importance in the system’s
description, which should be reflected in the ansatz
construction. Moreover, adopting a layerwise learning
scheme, where the operators are iteratively added to
the circuit, has shown an accuracy of the order of
10−7. By choosing an initial state with a suitable Jz
quantum number, we were also able to compute the
energy of the first excited state with a precision of 10−11.

Finally, we evaluated the qubit based excitation-UCC
(QBE-UCC), which neglects the fermionic anti-com-
mutation relation to reduce the number of CNOT and
SWAP gates needed. We performed, for the first time
to our knowledge, these calculations on a real quantum
device, a 27 qubits machine (ibmq mumbai), and we
were able to reproduce the exact ground state and first
excited state energy up to one standard deviation.

The number of nuclear states grows factorially with

the number of valence nucleons, making the scaling of
VQE applications impractical. Even if the numbers of
singles and doubles excitation operators seem to grow lin-
early [16], it may be necessary to use triples and quadru-
ples excitation operators as well. Reference [14] demon-
strated that quadruple operators acting on all valence
nucleons were necessary in a UCC ansatz for a 8Be nu-
cleus, composed of two protons and two neutrons in the
p-shell, and achieved 1% error ratio on statevector sim-
ulations with 118 parameters. This motivates symmetry
considerations to reduce the number of operators, in or-
der to prevent deep ansätze, which are not easily train-
able, while keeping all the operators needed to reproduce
the exact energy. This will be the focus of future research
in this direction.
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