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Bild was die Physiker sehen
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Generative models and the search for new physics at the LHC
The search for new physics at the Large Hadron Collider (LHC) requires comparing
real experimental data with statistical simulations produced by Monte Carlo (MC) event
generators. The MC simulations generate ‘fake’ data based on the known properties
of the experiment and the predictions derived from the mathematical formulation
of nature - the Standard Model. Any deviations between experimental results and
MC simulations could provide hints of new, unexplained phenomena. Because the
LHC produces O(109) proton-proton collisions every second, running equivalent
MC event generation can be expensive, both in time and in computing power.
This has lead to an increased interest in generative adversarial networks (GANs)
hoping to significantly accelerate MC generation and to reduce the computational load.

Today’s quantum devices are typically at the ‘Noisy Intermediate-Scale Quantum’
(NISQ) stage. However, even at this stage, there is an expectation that extending from
classical towards quantum machine learning could be beneficial. With the ongoing,
impressively fast development of quantum computing capabilities, we take this motiva-
tion and explore the applicability of quantum GANs to MC event generation for the LHC.

Workflow Design - Quantum Generator and Classical Discriminator

A simple GANa has 3 components:
(1) a discriminator, (2) a generator, (3) an
adversarial training procedure.

Here we present a quantum-classical
GAN, where the generator is a quantum
neural network (QNN) while the discrimi-
nator is a classical one (CNN).

Generating samples using a quantum de-
vice is very attractive because density
modeling and sampling are delegated to
the (quantum) hardware architecture.

The adversarial training is a 2-player min-
imax game:

• min
ϕg

LG(ϕg, ϕd), create accepted samples

• max
ϕd

LD(ϕg, ϕd), classify fake/real samples
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aGoodfellow et al., [arXiv:1406.2661].

Quantum Generator Architecture - the style-qGAN
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1style-qGAN modela: Each qubit rotation is
parameterized by the trainable parameters ϕg

and the latent vector ξ:
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New: The quantum generator embeds the in-
put latent variables into all the quantum gates
of the network. The architecture can process
and decide in which parts of the QNN the la-
tent variables should play a relevant role.

The quantum generator’s task is creating fake
samples to fool the classical discriminator.

The fake samples are prepared by acting with
the parameterized QNN on the initial n-qubit
state 0⊗n, and then measuring in the compu-
tational basis. Here, each qubit delivers one
sample component, i.e. the sample x ∈ Rn is
generated as

x =
[
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∣∣∣σi
z
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〉
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where |Ψ(ϕg, ξ)⟩ is the output state from the
quantum generator. Other ways to generate
fake samples are possible.

aThe classical counterpart was proposed in Karras et al., [arXiv:1812.04948].

Training and Validation - Learning a known D = 1 Γ-distribution
As first application and to test the framework we sample a 1D Γ-distribution:
pγ(x, α, β) = xα−1 e−x/β

βαΓ(α) , where Γ is the Gamma function and we set pγ(x, 1, 1). We find:
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Example of loss function convergence. After
an initial warm-up phase, the loss function of
both models converges. This indicates that the
style-qGAN has been successfully trained.
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Examples of 1D gamma distribution sampling for the reference underlying distribution (red) and
a style-qGAN model (blue) that has been trained with 104 reference samples. The left plot com-
pares 104 generated samples. The right compares 105 samples generated from the style-qGAN
model trained with 104 reference samples. We observe a good level of agreement between both
distributions, despite the model being trained on a small training set.

LHC Event Generation - Results on Simulated Hardware
We apply the style-qGAN to the Monte Carlo event generation of the process of two protons
producing a top quark pair, pp → tt̄, at the LHC with

√
s = 13 TeV energy. We generated 104 MC

events for training classically and selected three observables - the Mandelstam variables (s, t)

and the rapidity y. The data is fully 3D correlated and can be used to classify this process.
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Marginal sample distributions for the physical observables s, t, y in pp → tt̄ production at the LHC
for the style-qGAN model trained with 104 samples (top row), corresponding two-dimensional
sampling projections (middle row) and the ratio to the reference underlying prior MC distribution
(bottom row). The model uses 3-qubits with 5 latent dimensions and 2 layers.

Results on Quantum Hardware - ibmQ and ionQ
We benchmark our style-qGAN model on real quantum hardware:

• superconducting transmon qubits as provided by IBM Q quantum computersa

• trapped ion technology as provided by IonQ quantum computersb
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Marginal sample distributions for the physical observables s, t, y in pp → tt̄ production at the
LHC using the style-qGAN generator model trained with 104 samples on ibmq_santiago.
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Example of two-dimensional sampling projections for pp → tt̄ production using the style-qGAN
generator model on ibmq_santiago (top row) and IonQ (bottom row) trained with 104 samples.

ahttps://research.ibm.com/blog/ibm-quantum-roadmap
bhttps://IonQ.com/posts/december-09-2020-scaling-quantum-computer-roadmap

Proof-of-concept - The style-qGAN as MC Event Generator
• We present a quantum generator architecture - the style-qGAN - for generative ad-

versarial learning for Monte Carlo event generation, used to simulate particle physics
processes at the Large Hadron Collider (LHC).

• We implement and validate the quantum network on artificial data generated from
known underlying distributions. The network is then applied to Monte Carlo-
generated datasets of specific LHC scattering processes.

• The new quantum generator architecture leads to an improvement in state-of-the-art
implementations while maintaining shallow-depth networks.

• The quantum generator successfully learns the underlying distributions even if
trained with small training sample sets making it particularly interesting for data aug-
mentation applications.

• We deploy our method on two different quantum hardware architectures, trapped-ion
and superconducting technologies, to test its hardware-independent viability.

More details in
C. Bravo-Prieto, J. Baglio, M. Cè, A. Francis, D. M. Grabowska and S. Carrazza, “Style-based
quantum generative adversarial networks for Monte Carlo events,” arXiv:2110.06933 [quant-ph].


