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Agent interacts with environment

• Receives reward after every action

• Learns through trial-and-error

Decision making

• Agent follows certain policy 𝝅: 𝑆 → 𝐴

• Goal: find optimal policy 𝝅∗

• Optimal maximizing return: 𝐺𝑡 = σ𝑘 𝛾𝑘𝑅𝑡+𝑘

Reinforcement learning in a nutshell

Expected return can be estimated by value function Q(s, a)

• “What’s the best action to take in each state” => greedy policy: take action that maximizes Q(s,a)

• Not a priori known, but can be learned iteratively

• This talk: Q-learning – learn Q(s, a) using function approximator

• DQN: Deep Q-learning (feed-forward neural network)

• QBM-RL (Quantum Boltzmann Machine)

RL book: Sutton & Barto

source

https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://bair.berkeley.edu/blog/2019/05/28/end-to-end/


Motivation

• Why using QBM for RL?

• Free energy based RL (FERL): efficient for high-dim. spaces 
(https://www.jmlr.org/papers/volume5/sallans04a/sallans04a.pdf)

• Higher sample efficiency over Deep Q-learning 
(https://arxiv.org/pdf/1706.00074.pdf)

• Quantum RL: an exciting combination 

• Objective: apply to one of our RL problems: beam steering

DQN QBM

𝝅∗

https://www.jmlr.org/papers/volume5/sallans04a/sallans04a.pdf
https://arxiv.org/pdf/1706.00074.pdf


Q-learning with QBM and DQN

DQN: Q-net

• Feed-forward, dense neural network

• 2 hidden layers, 8 nodes each (≈ Chimera graph)

• Can handle discrete, binary-encoded state and action spaces

Learning: update Q by applying temporal difference rule to 
QBM and Q-net weights, respectively

FERL: clamped QBM

• Network of coupled, stochastic, binary units (spin up / down)

• 𝑸 𝒔, 𝒂 ≈ negative free energy of classical spin configurations 𝑐

• Sampling 𝑐 using (simulated) quantum annealing

• Clamped: visible nodes not part of QBM; accounted for as biases

• Using 16 qubits of D-Wave Chimera graph

• Discrete, binary-encoded state and action spaces 𝑄 𝑠, 𝑎 ≈ −𝐹 𝒗 = − 𝐻𝒗
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Our project: beam steering

• Toy model based on actual steering problem, e.g. for fixed 
target experiments at CERN Super Proton Synchrotron

• OpenAI gym template

• Action: deflection angle

• 2 possibilities: up or down by fixed amount

• State: beam position at BPM

• Reward: integrated beam intensity on target

• Additional reward for success

State
Reward

Action

x
Dipole 
magnet

Beam Position 
Monitor (BPM)

Target

±3
σParticle beam

https://gym.openai.com/


DQN: main results

• Stable-baselines3 implementation of DQN

• Efficiency: required # training_steps after hyperparameter tuning

• 300+ training steps: get optimal policy with nearly 100% success rate

• No need to visit every state-action pair: 256 states x 2 actions = 512 >> ntrain

https://stable-baselines3.readthedocs.io/en/master/


DQN: “looking inside the agent’s mind”

• See how agent learns and makes decisions

• Our simple environment: optimal policy 𝝅∗ 𝑠 known

• Benchmark for convergence: calculate optimal state-
value function V* using Monte-Carlo evaluation

• Q-functions prove problem has been solved

• Here: no need to train until convergence

𝜋∗(𝑠)



QBM: results with simulated quantum annealing

• Tune QBM-RL with simulated quantum annealing (SQA, library: sqaod)
before moving to D-Wave QPU

• With some tuning: successful training (300 iterations)

• 𝑄(𝑠, 𝑎) leads to optimal policy

• Similar efficiency to DQN

𝜋∗(𝑠)

https://github.com/shinmorino/sqaod


QBM: results on D-Wave 2000Q, part I

• AWS Braket platform: D-Wave 2000Q

• First trainings not successful: hyperparameter scans on 
hardware too expensive

• Train QBM with SQA and reload trained weights on D-Wave

• Evaluation on D-Wave looks promising!

SQA agent evaluation on 
D-Wave 2000Q

Evolution of QBM 
weights during 
training with SQA



• D-Wave training from scratch (600 iterations) after additional hyperparameter tuning with SQA

• Successful RL training on real QPU  !

QBM: results on D-Wave 2000Q, part II



Summary

• Comparison between Deep Q-learning (Q-net) and Free Energy based RL (QBM)

• Simple beam steering environment to start with

• Successfully trained both DQN and QBM

• Preliminary: similar sample efficiency between DQN and QBM

• Advantage only apparent for larger state-action spaces?

• QBM: training successful with simulated quantum annealing (SQA) and on D-Wave 2000Q

• Can exchange weights between agent trained with SQA and on D-Wave

• Training on D-Wave 2000Q less effective likely due to lack of on-hardware parameter tuning

• Outlook: consider more complex RL environment

Thank you !



Backup



FERL https://www.jmlr.org/papers/volume5/sallans04a/sallans04a.pdf

• In RL: need to estimate action-value functions in high dimensional state-action space where not all 
state-action pairs can be visited (e.g. 240)

• Can no longer use table: use function approximator 𝑸(𝒔, 𝒂)

• Conditions: need to be able to calculate derivative of 𝑸 wrt. its weights to train using TD rule

• One option: Product of Experts (PoE) models

• Combine simple probabilistic models by multiplying their probability distributions with each other

• e.g. stochastic binary units of BM

• Free energy of such models can be used as approximator of value function, but needs training for 
different visible nodes (state-action pairs)

• Once trained, sampling according to PoE will give probability distribution over actions given a fixed 
state (Boltzmann exploration policy)

• Intuition: good actions sampled more likely than bad ones

• Probabilistic nature provides advantage in large state-action spaces compared to traditional NN

https://www.jmlr.org/papers/volume5/sallans04a/sallans04a.pdf


FERL: Clamping

• All nodes of QBM are hidden

• Clamping: add visible nodes as self-couplings (biases) to hidden 
nodes they are connected to and remove them from the graph

• Every spin configuration has specific energy described by 
Hamiltonian of the transverse-field Ising model

Γ: transverse field strength, σx,z: Pauli spin matrices

• Once we measure spin in z direction, we no longer have access to 
transverse component => cannot know system’s energy 

• Can be fixed using replica stacking (Suzuki-Trotter expansion)
see https://arxiv.org/pdf/1706.00074.pdf and refs. therein
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Results: QBM with SQA, 2D scans
Mean Std. dev.

𝜞𝒇 vs 𝜷

lrfinal vs lrinitial


