CERN ._?":l; CERN
\w 1= Openlab

Quantum Reinforcement Learning
for Beam Steering

V. Kain, K. Li, M. Schenk
BE-OP-SPS, CERN, Switzerland

E. F. Combarro”, M. Popa, S. Vallecorsa
CERN Openlab, Switzerland
*also at University of Oviedo, Spain

CERN Openlab Technical Workshop 11. March 2021

Contents

* Introduction: RL in a nutshell
* Motivation: QBM vs DQN
* Our project: beam steering

 Results: with DQN and QBM

Reinforcement learning in a nutshell 8L book: sutton & Barto

.]] ‘:| Agent |
Agent interacts with environment (2%
. . state | |reward i
* Receives reward after every action s, | [, P
. o Rr+l (
* Learns through trial-and-error .. | Environment]4_

\

Decision making
* Agent follows certain policym: S — A4
* Goal: find optimal policy *
* Optimal & maximizing return: G, = Y, Y*Ri1x

45 minutes 1h 15 minutes

source

Expected return can be estimated by value function Q(s, a)

* “What’s the best action to take in each state” => greedy policy: take action that maximizes Q(s,a)
* Not a priori known, but can be learned iteratively

* This talk: Q-learning — learn Q(s, a) using function approximator

e DQN: Deep Q-learning (feed-forward neural network)
 QBM-RL (Quantum Boltzmann Machine)

11.03.2021

https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://bair.berkeley.edu/blog/2019/05/28/end-to-end/

Motivation

 Why using QBM for RL?

* Free energy based RL (FERL): efficient for high-dim. spaces
(https://www.imlr.org/papers/volume5/sallans04a/sallans04a.pdf)

* Higher sample efficiency over Deep Q-learning
(https://arxiv.org/pdf/1706.00074.pdf)

* Quantum RL: an exciting combination ©

e Objective: apply to one of our RL problems: beam steering

1.0
0.8 1
2 061
=t
= 04
" DQN
0.0 T T T 0.0 + T T T T
0 10000 20000 30000 40000 0 100 200 300 400 500
Training Sample Training Sample
F_IG. 4: The learning curve of a (%eep Q-network (DQN) \jmth two D-Wave T'= 0.5, f = 2.0 SQA Chimera T = 0.5, = 2.0
hidden layers, each with eight hidden nodes, for the grid-world . o
roblem instance as shown in Fig. TV D-Wave Classical f =2.0 ~ —— SQA Bipartite I'=0.5,§ =2.0
p AV —— SA Chimera § = 2.0 —— RBM

—— SA Bipartite f§ =2.0

Free energy-based reinforcement learning using a quantum processor

Anna Levit,! Daniel Crawford,! Navid Ghadermarzy,':?
Jaspreet S. Oberoi,’>® Ehsan Zahedinejad,! and Pooya Ronagh®? *

11QBit, 458-550 Burrard Street, Vancowver (BC), Canada V6C 2B5
?Department of Mathematics, The University of British Columbia,
121-1984 Mathematics Road, Vancowver (BC), Canada V6T 172
9School of Engineering Science, Simon Fraser University,
8888 University Drive, Burnaby (BC), Canada V5A 156

Recent theoretical and experimental results suggest the possibility of using current and near-future
quantum hardware in challenging sampling tasks. In this paper, we introduce free energy-based
reinforcement learning (FERL) as an application of quantum hardware. We propose a method for
processing a quantum annealer’s measured qubit spin configurations in approximating the free energy
of a quantum Boltzmann machine (QBM). We then apply this method to perform reinforcement
learning on the grid-world problem using the D-Wave 2000Q quantum annealer. The experimental
results show that our technique is a promising method for harnessing the power of quantum sampling
in reinforcement learning tasks.

W
p

FIG. 3: (top) A 3 x 5 grid-world problem instance with one reward,
one wall, and one penalty. (bottom) An optimal policy for this
problem instance is a selection of directional arrows indicating

movement directions.

11.03.2021

https://www.jmlr.org/papers/volume5/sallans04a/sallans04a.pdf
https://arxiv.org/pdf/1706.00074.pdf

Q-learning with QBM and DQN Clamped QBM

FERL: clamped QBM

Network of coupled, stochastic, binary units (spin up / down)

Q(s, a) = negative free energy of classical spin configurations c

visible nodes v

Sampling c using (simulated) quantum annealing

Clamped: visible nodes not part of QBM; accounted for as biases

Using 16 qubits of D-Wave Chimera graph

. 1
* Discrete, binary-encoded state and action spaces Q(s,a) = —F(v) = —(HEM) — Ez P(c|v) log P(c|v)
DQN: Q-net Q-net
* Feed-forward, dense neural network BE 5 o O
* 2 hidden layers, 8 nodes each (= Chimera graph) _1 o 8 8
* Can handle discrete, binary-encoded state and action spaces 1| O ; ; g L 2253]
' ‘0 o0 X
T : : 1 O 0 0O ~ ((s,a)
Learning: update Q by applying temporal difference rule to
state o 0

QBM and Q-net weights, respectively

Our project: beam steering

Target
Beam Position
Monitor (BPM)
X A
Dipole
magnet Q
?5‘ Reward
____________________ o flsee s
Q
Action
* Toy model based on actual steering problem, e.g. for fixed o {— o pos. (= st —— 10
target experiments at CERN Super Proton Synchrotron I \
L [Threshold N7 7] 0.8
* OpenAl gym template
- 21
e Action: deflection angle £ (96 5
g o
* 2 possibilities: up or down by fixed amount : s
T Q _5]
e State: beam position at BPM
H . . -4 4 0.2
 Reward: integrated beam intensity on target
e Additional reward for success 1 , , , , , i
=150 =100 =50 0 50 100 150

. MSSB angle (urad) 11.03.2021

https://gym.openai.com/

DQN: main results

* Stable-baselines3 implementation of DQN

» Efficiency: required # training_steps after hyperparameter tuning
* 300+ training steps: get optimal policy with nearly 100% success rate

* No need to visit every state-action pair: 256 states x 2 actions =512 >> n, ;.

Agent test before training

Agent training

100 -

80

60

Optimality (%)

20 A

50 00 150 200 250 300
n_steps_train

Agent test after training

Abort reason
Vo
®,
%

- e s e

e LT

10.0 T —— #steps 9.5 +/- 2.1
—— Max. # steps
| ==~ uB optimal behaviour

[7}
©
[=]
v
a
(1]
& 50
"]
)
2 2.51
#*

T —— #steps 3.7 +/-2.6

—— Max. # steps

| === UB optimal behaviour

T —— #steps 3.4 +/-1.6

1 === uB optimal behaviour

—— Max. # steps

0.0
-40
- J
g —60 A
=
& .
—801 —— Initial —e— Initial
—— Final —— Final i
-100 4 x omxx o
0 10 20 30 0 20 40 60 80 100 120
Episode Episode Episode

350

400

450

https://stable-baselines3.readthedocs.io/en/master/

DQN: “looking inside the agent’s mind”

Q-net response, step 0

1.0 A _
Zog { TTTTTTTTTTATTTTTTTTTTTTTT
g
* See how agent learns and makes decisions £ 067
]
© 0.4
* Our simple environment: optimal policy t*(s) known 8 | — Integyéted intensity / reward
£ 024 --- Tapdet
* Benchmark for convergence: calculate optimal state- 00 L= remard. | | | | |
value function V* using Monte-Carlo evaluation
. : : _—— Action 0
* Q-functions prove problem has been solved 04 r ! i Action 1
i i — V¥ (MC)
* Here: no need to train until convergence g : i
2 i |
I |
~200 1 | |
1 |
1 |
1 |
T T I T T T I T T
-6 —4 -2 0 2 4 6

State, BPM pos. (mm)

QBM: results with simulated quantum annealing

* Tune QBM-RL with simulated quantum annealing (SQA, library: sqaod)
before moving to D-Wave QPU

—— Action 0
—— Action 1
——- Success region

|
[
(=}
o

e With some tuning: successful training (300 iterations)

é (arb. units)
o
o
o

 Q(s,a) leads to optimal policy

»

* Similar efficiency to DQN ~300
1.00 A | & GEE= == o—
i i
100 - 5 018 i i
= 1 1
® 0.50 ! ! 7'[*(5)
o i]
2 1 1
% 1 @ 0.25 , ,
i i
0.00 s - I_ —: :
80
g
L 2
T
,,,,,,,,,,,,,, E 707 oritiristarsrai el @
S @
>
60 *
50 - -6 -4 -2 0 2 4 b
State, BPM pos. (mm)

50 100 150 200 250 300 350 400 450
n_training_steps

9 11.03.2021

https://github.com/shinmorino/sqaod

QBM: results on D-Wave 2000Q, part |

* AWS Braket platform: D-Wave 2000Q

 First trainings not successful: hyperparameter scans on
hardware too expensive

e Train QBM with SQA and reload trained weights on D-Wave

* Evaluation on D-Wave looks promising!

Evolution of QBM
weights during ~20-
training with SQA el

Wy
[«]

0 50 100 150 200 250 300
Iteration

Abort reason

10

steps per episode

SQA agent evaluation on
D-Wave 2000Q

oooooo

T = #steps29+/-11
| =— Max. # steps
=== UB optimal behaviour

e |[nitial

Final

0.0 25 50 75 100 125 150 175
Episode

11.03.2021

QBM: results on D-Wave 2000Q, part Il

* D-Wave training from scratch (600 iterations) after additional hyperparameter tuning with SQA
 Successful RL training on real QPU © !

Agent training Agent test after training

% ~
[oo
2 g
g < T ——— S e I Tl I
X
5 ‘\@"
8 S
< 'be
& <
D :}?’
%
&
g 10.0 T—— #steps 4.8 +/- 3.1 T —— #steps 2.6 +/-1.1
b —— Max. # steps — Max. # steps
2 751|-=% (ud optimal behaviour 1 =-- UB optimal behaviour
@
:. 5.0 LA Il . L _ E
g
£ 254 b
#*
0-0 T T T T
50 -
0-
® il I H ‘ | :
©
=
2 _so / | ' A
—e— |Initial | —e— |Initial
—_— ﬁ al —— Final
—100 - T T T T T T T T T T T T
O 75 100 125 150 175 0 5 10 15 20 25 30

Episode Episode
11

Summary

 Comparison between Deep Q-learning (Q-net) and Free Energy based RL (QBM)
 Simple beam steering environment to start with

* Successfully trained both DQN and QBM
* Preliminary: similar sample efficiency between DQN and QBM
* Advantage only apparent for larger state-action spaces?

 QBM: training successful with simulated quantum annealing (SQA) and on D-Wave 2000Q
e Can exchange weights between agent trained with SQA and on D-Wave
* Training on D-Wave 2000Q less effective likely due to lack of on-hardware parameter tuning

* Outlook: consider more complex RL environment

Thank you !

Backup

F E R L https://www.jmlr.org/papers/volume5/sallans04a/sallans04a.pdf

* |n RL: need to estimate action-value functions in high dimensional state-action space where not all
state-action pairs can be visited (e.g. 249)

 Can no longer use table: use function approximator Q(s, a)

* Conditions: need to be able to calculate derivative of Q wrt. its weights to train using TD rule

* One option: Product of Experts (PoE) models
 Combine simple probabilistic models by multiplying their probability distributions with each other
* e.g.stochastic binary units of BM

* Free energy of such models can be used as approximator of value function, but needs training for
different visible nodes (state-action pairs)

 Once trained, sampling according to PoE will give probability distribution over actions given a fixed
state (Boltzmann exploration policy) o—F(s2)/T ,0(s,)/T
P(als) = Z ~ ~

* [ntuition: good actions sampled more likely than bad ones

* Probabilistic nature provides advantage in large state-action spaces compared to traditional NN

https://www.jmlr.org/papers/volume5/sallans04a/sallans04a.pdf

FERL: Clamping

* All nodes of QBM are hidden

e Clamping: add visible nodes as self-couplings (biases) to hidden
nodes they are connected to and remove them from the graph

* Every spin configuration has specific energy described by
Hamiltonian of the transverse-field Ising model

Hy = — Z w'vof — Z w 0?07, — T Z oy
veV, heH {h,h'}cH heH
[: transverse field strength, o**: Pauli spin matrices

* Once we measure spin in z direction, we no longer have access to
transverse component => cannot know system’s energy

* Can be fixed using replica stacking (Suzuki-Trotter expansion)
see https://arxiv.orq/pdf/1706.00074.pdf and refs. therein

https://arxiv.org/pdf/1706.00074.pdf

Results: QBM with SQA, 2D scans

Mean

beta

erSB

0.05 0.1 0.2 0.4 0.6
big_gamma__f

0.005
0.01

0.02

0.03

Ir f

Irflnal VS Ir|n|t|al

0.04
0.05

0.06

0.04 0.03 0.02 0.01 0.005
Ir_i

Mean optimality (%)

(=)}
o

Mean optimality (%)

Ir f

0.005
0.01
0.02
0.03
0.04
0.05
0.06

beta

Std. optimality (%)

Std. dev.
6
0.0 0.05 0.1 0.2 0.4 0.6
big_gamma__f

~

w » w
Std. optimality (%)

N

-

0.005 0.001
r_|

11.03.2021

