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Reinforcement learning in a nutshell 8L book: sutton & Barto
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Decision making
* Agent follows certain policym: S — A4
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Expected return can be estimated by value function Q(s, a)

* “What’s the best action to take in each state” => greedy policy: take action that maximizes Q(s,a)
* Not a priori known, but can be learned iteratively

* This talk: Q-learning — learn Q(s, a) using function approximator

e DQN: Deep Q-learning (feed-forward neural network)
 QBM-RL (Quantum Boltzmann Machine)
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https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://bair.berkeley.edu/blog/2019/05/28/end-to-end/

Motivation

 Why using QBM for RL?

* Free energy based RL (FERL): efficient for high-dim. spaces
(https://www.imlr.org/papers/volume5/sallans04a/sallans04a.pdf)

* Higher sample efficiency over Deep Q-learning
(https://arxiv.org/pdf/1706.00074.pdf)

* Quantum RL: an exciting combination ©

e Objective: apply to one of our RL problems: beam steering
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Free energy-based reinforcement learning using a quantum processor
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Recent theoretical and experimental results suggest the possibility of using current and near-future
quantum hardware in challenging sampling tasks. In this paper, we introduce free energy-based
reinforcement learning (FERL) as an application of quantum hardware. We propose a method for
processing a quantum annealer’s measured qubit spin configurations in approximating the free energy
of a quantum Boltzmann machine (QBM). We then apply this method to perform reinforcement
learning on the grid-world problem using the D-Wave 2000Q quantum annealer. The experimental
results show that our technique is a promising method for harnessing the power of quantum sampling
in reinforcement learning tasks.
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FIG. 3: (top) A 3 x 5 grid-world problem instance with one reward,
one wall, and one penalty. (bottom) An optimal policy for this
problem instance is a selection of directional arrows indicating

movement directions.
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https://www.jmlr.org/papers/volume5/sallans04a/sallans04a.pdf
https://arxiv.org/pdf/1706.00074.pdf

Q-learning with QBM and DQN Clamped QBM

FERL: clamped QBM

Network of coupled, stochastic, binary units (spin up / down)

Q(s, a) = negative free energy of classical spin configurations c

visible nodes v

Sampling c using (simulated) quantum annealing

Clamped: visible nodes not part of QBM; accounted for as biases

Using 16 qubits of D-Wave Chimera graph

. 1
* Discrete, binary-encoded state and action spaces Q(s,a) = —F(v) = —(HEM) — Ez P(c|v) log P(c|v)
DQN: Q-net Q-net
* Feed-forward, dense neural network BE 5 o O
* 2 hidden layers, 8 nodes each (= Chimera graph) _1 o 8 8
* Can handle discrete, binary-encoded state and action spaces 1| O ; ; g L 2253]
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Learning: update Q by applying temporal difference rule to
state o 0

QBM and Q-net weights, respectively



Our project: beam steering
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https://gym.openai.com/

DQN: main results

* Stable-baselines3 implementation of DQN

» Efficiency: required # training_steps after hyperparameter tuning
* 300+ training steps: get optimal policy with nearly 100% success rate

* No need to visit every state-action pair: 256 states x 2 actions =512 >> n, ;.
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https://stable-baselines3.readthedocs.io/en/master/

DQN: “looking inside the agent’s mind”

Q-net response, step 0
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QBM: results with simulated quantum annealing

* Tune QBM-RL with simulated quantum annealing (SQA, library: sqaod)
before moving to D-Wave QPU
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https://github.com/shinmorino/sqaod

QBM: results on D-Wave 2000Q, part |

* AWS Braket platform: D-Wave 2000Q

 First trainings not successful: hyperparameter scans on
hardware too expensive

e Train QBM with SQA and reload trained weights on D-Wave

* Evaluation on D-Wave looks promising!
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QBM: results on D-Wave 2000Q, part Il

* D-Wave training from scratch (600 iterations) after additional hyperparameter tuning with SQA
 Successful RL training on real QPU © !

Agent training Agent test after training
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Summary

 Comparison between Deep Q-learning (Q-net) and Free Energy based RL (QBM)
 Simple beam steering environment to start with

* Successfully trained both DQN and QBM
* Preliminary: similar sample efficiency between DQN and QBM
* Advantage only apparent for larger state-action spaces?

 QBM: training successful with simulated quantum annealing (SQA) and on D-Wave 2000Q
e Can exchange weights between agent trained with SQA and on D-Wave
* Training on D-Wave 2000Q less effective likely due to lack of on-hardware parameter tuning

* Outlook: consider more complex RL environment

Thank you !
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F E R L https://www.jmlr.org/papers/volume5/sallans04a/sallans04a.pdf

* |n RL: need to estimate action-value functions in high dimensional state-action space where not all
state-action pairs can be visited (e.g. 249)

 Can no longer use table: use function approximator Q(s, a)

* Conditions: need to be able to calculate derivative of Q wrt. its weights to train using TD rule

* One option: Product of Experts (PoE) models
 Combine simple probabilistic models by multiplying their probability distributions with each other
* e.g.stochastic binary units of BM

* Free energy of such models can be used as approximator of value function, but needs training for
different visible nodes (state-action pairs)

 Once trained, sampling according to PoE will give probability distribution over actions given a fixed
state (Boltzmann exploration policy) o—F(s2)/T  ,0(s,)/T
P(als) = Z ~ ~

* [ntuition: good actions sampled more likely than bad ones

* Probabilistic nature provides advantage in large state-action spaces compared to traditional NN


https://www.jmlr.org/papers/volume5/sallans04a/sallans04a.pdf

FERL: Clamping

* All nodes of QBM are hidden

e Clamping: add visible nodes as self-couplings (biases) to hidden
nodes they are connected to and remove them from the graph

* Every spin configuration has specific energy described by
Hamiltonian of the transverse-field Ising model

Hy = — Z w'vof — Z w 0?07, — T Z oy
veV, heH {h,h'}cH heH
[: transverse field strength, o**: Pauli spin matrices

* Once we measure spin in z direction, we no longer have access to
transverse component => cannot know system’s energy

* Can be fixed using replica stacking (Suzuki-Trotter expansion)
see https://arxiv.orq/pdf/1706.00074.pdf and refs. therein



https://arxiv.org/pdf/1706.00074.pdf

Results: QBM with SQA, 2D scans
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