Quantum Computing for HEP The CERN QTI

Sofia Vallecorsa

CERN openlab, IT Department

CERN QTI - Nov 12th 2020

High-Level Objectives

- Assess the potential and role of QML in HEP workloads, work on optimization and more robust mathematical formulations
- Build expertise in the state-of-the-art of the software stack (simulators, compilers, programming models/languages/tools)
- Work on quantum systems simulators (FPGA?)
- Set up a distributed QCS platform

Communications

- Explore possible applications of QKD
- Comms+sensing for detectors?
- European Quantum Network/Internet

Computing

- Sensing
- Ion/particle traps as computing/sensing devices
- Mass/charge/gravity sensors
- Quantum clocks
- Nanowires/nanodots for particle tracking/calorimetry
- Rydberg calorimetry

- Simulation of quantum systems
- Quantum gravity
- Information processing, error mitigation/correction strategies

Testbeds for developers

Algorithms/Applications

Classical quantum simulation platforms

Access to quantum hardware

Algorithms and applications

- Understand what HEP applications can profit from a quantum approach
 - Start from understood use cases
 - Constraints, challenges and best strategies
- Algorithms design and/or optimisation
 - Input data representation/ data loading
 - De-quantization tests / circuits characterization
 - Different types of hardware / hardware-aware computations
 - Noisy Intermediate-Scale Quantum (NISQ) hardware

Algorithms and applications (II)

- So far most algorithms under study are **Quantum Machine Learning**
- Applications in all fields of data processing

- Quantum Computing scope is broader
 - Accelerate optimisation problems
 - Direct quantum simulation

Links to other branches (Theory, ...)

arXiv:2010.08520v1

Near-term hardware

• NISQ

- Short coherence time, noise
- Limited number of qubits
- Limited topology
- Development of error mitigation techniques and error robust circuits
- Hybrid strategies (variational approaches) are most popular today
- Quantum volume
- Require detailed noise simulation
- Collaboration with quantum hardware experts

Scaling IBM Quantum technology

https://www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/

CERN QTI - Nov 12th 2020

Classical simulators

- Computational cost scales exponentially with n_{qubit}
 - Large memory systems
 - Low latency / fast communication
 - HPC/Cloud/ accelerators
- Large number of simulators
 - <u>https://quantiki.org/wiki/list-qc-simulators</u>
 - Wide range of features/implementations/performance
 - Move toward hardware-agnostic?
 - Compiler style? Circuits optimisers?
- Interest in simulators development?

arxiv:2009.01845 https://github.com/Quantum-TII/qibo

Developers testbeds

- Custom clusters (accelerator-based) on site
- Appliances Ex. ATOS QLM

Atos QLM software stack

Atos Quantum Learning Machine

• Cloud resources (some providers offer quantum simulation services)?

QC Simulation Platform

Critical to build skills and **start R&D work**, both as a preparation to real H/W and to explore "quantum-inspired" computing

"Standardized" access to different simulators, hardware, tools, libraries (e.g. pre-packaged containers, Jupyter notebooks, GitHub, etc.)

Multiple participating sites, capitalizing on CERN world-level expertise in operating **distributed infrastructures**

Access to quantum hardware

- Today most quantum hardware is available on cloud
 - "Quantum" companies (IBM, Google, Rigetti, Xanadu,..)
 - General cloud providers (AWS, Microsoft)
- Streamline/organize access
- **Direct access** through quantum networks (IBM)?

Google

Summary

- « Practical » quantum computing requires synergies and collaborative efforts across disciplines/applications
 - A thin line between theory and experiment
- Algorithm design/optimisation is « transversal issue »
 - Same challenges across different practical applications
- Collect **priorities** and define a **roadmap** according to interests and expertise

Let's get to work! Comments/Remarks/Questions

Sofia.Vallecorsa@cern.ch

https://quantum.cern/

CERN QTI - Nov 12th 2020